
cryptlib
Security Toolkit

Version 3.0 beta 2

Copyright Peter Gutmann 1992-2000

May 2000

cryptlib Overview i

INTRODUCTION 1
cryptlib Overview 1

cryptlib features 2
Programming Interface 2
Standards Compliance 2
Y2K Compliance 3
Encrypted Object Management 3
S/MIME 3
Certificate Management 4
Key Database Interface 4
Smart Card Support 5
Security Features 5
Performance 6
Cryptographic Random Number Management 6
Configuration Options 7

Document conventions 7

Recommended Reading 7

INSTALLATION 8
Installing cryptlib for Windows 3.x 8

Installing cryptlib for Windows’95/98 and Windows NT 8

Installing from Source Code 8
BeOS 8
DOS 8
DOS32 8
Macintosh 8
MVS 8
OS2 9
VM/CMS 9
Windows 3.x 9
Windows’95/98 and Windows NT 10
Unix 10
Other systems 11
Key Database Setup 12
Certificate Installation 12
Cut-down cryptlib Versions 13
Support for Vendor-specific Algorithms 13

CRYPTLIB BASICS 14
Programming interfaces 14

Container object interface 15
Mid-level interface 15
Action object interface 15

Objects and Interfaces 15

Objects and Attributes 16

Interfacing with cryptlib 16
Initialisation 16

Working with Object Attributes 17
Attribute Types 18

Object Security 19

Interaction with External Events 21

ENVELOPING CONCEPTS 22
Creating/Destroying Envelopes 22

The Data Enveloping Process 23
Data Size Considerations 24

Introductionii

Basic Data Enveloping 25
Compressed Data Enveloping 26
Password-based Encryption Enveloping 27
De-enveloping Mixed Data 27

Enveloping Large Data Quantities 28
Alternative Processing Techniques 29
Enveloping with Many Enveloping Attributes 30

ADVANCED ENVELOPING 32
Public-Key Encrypted Enveloping 32

Digitally Signed Enveloping 35

Enveloping with Multiple Attributes 36
Envelope Attribute Cursor Management 36
Processing Multiple Deenveloping Attributes 37

Nested Envelopes 39

KEY DATABASES 40
Creating/Destroying Keyset Objects 40

File Keysets 41
HTTP Keysets 42
LDAP Keysets 42
Relational Database Keysets 43
Smart Card Keysets 45

Extended Keyset Initialisation 46
LDAP Keysets 46
Relational Database Keysets 46
Smart Card Keysets 47

Accessing a Keyset 49

Reading a Key from a Keyset 50
Obtaining a Key for a User 50
General Keyset Queries 52
Handling Multiple Certificates with the Same Name 54

Writing a Key to a Keyset 54

Deleting a Key 55

ENCRYPTION AND DECRYPTION 56
Creating/Destroying Encryption Contexts 56

Generating a Key into an Encryption Context 57
Public/Private Key Generation 58

Deriving a Key into an Encryption Context 59

Loading Keys into Encryption Contexts 60
Loading Initialisation Vectors 61

Working with Public/Private Keys 61
Loading Multibyte Integers 62

Querying Encryption Contexts 63

ENCRYPTING/DECRYPTING DATA 64
Using Encryption Contexts to Encrypt/Decrypt Data 64

EXCHANGING KEYS 66
Exporting a Key 66

Exporting using Conventional Encryption 67

Importing a Key 68
Importing using Conventional Encryption 69

Querying an Exported Key Object 69

Extended Key Export/Import 70

cryptlib Overview iii

Key Agreement 70

SIGNING DATA 72
Querying a Signature Object 73

Extended Signature Creation/Checking 74

CERTIFICATE MANAGEMENT 76
Overview of Certificates 76

Certificates and Standards Compliance 76

The Certification Process 77

Creating/Destroying Certificate Objects 78

Working with Certificate Attributes 79

Certificate Structures 79
Attribute Certificate Structure 79
Certificate Structure 81
Certification Request Structure 83
CRL Structure 83

Basic Certificate Management 84

Certificate Identification Information 86
DN Structure for Business Use 87
DN Structure for Private Use 88
Other DN Structures 88
Working with Distinguished Names 88

Extended Certificate Identification Information 88
Working with GeneralNames 90
Certificate Fingerprints 90

Importing/Exporting Certificates 90

Signing/Verifying Certificates 93

Certificate Trust Management 95
Working with Trust Settings 95

Certificate Errors 96

CERTIFICATE EXTENSIONS 97
Extension Structure 97

Working with Extension Attributes 98
Extension Cursor Management 98
Composite Extension Attributes 100

X.509 Extensions 101
Alternative Names 101
Basic Constraints 101
Certificate Policies, Policy Mappings, and Policy Constraints 102
CRL Distribution Points and Authority Information Access 103
Directory Attributes 103
Key Usage, Extended Key Usage, and Netscape cert-type 103
Name Constraints 106
Private Key Usage Period 107
Subject and Authority Key Identifiers 107

CRL Extensions 108
CRL Reasons, CRL Numbers, Delta CRL Indicators 108
Hold Instruction Code 109
Invalidity Date 109
Issuing Distribution Point and Certificate Issuer 109

Digital Signature Legislation Extensions 110
Certificate Generation Date 110
Other Restrictions 110
Reliance Limit 111

Introductioniv

Signature Delegation 111

SET Extensions 111
SET Card Required and Merchant Data 111
SET Certificate Type, Hashed Root Key, and Tunneling 112

Vendor-specific Extensions 112
Netscape Certificate Extensions 112
Thawte Certificate Extensions 113

MAINTAINING KEYS AND CERTIFICATES 114
Updating a Private Key with Certificate Information 114

Changing a Private Key Password 115

The Certification Process 115

Certificate Chains 117
Working with Certificate Chains 117
Signing Certificate Chains 118
Checking Certificate Chains 119
Exporting Certificate Chains 120

Certificate Revocation Lists 120
Working with CRL’s 121

Creating CRL’s 121
Advanced CRL Creation 122

Checking Certificates against CRL’s 122
Automated CRL Checking 123

FURTHER CERTIFICATE OBJECTS 124
Certificate-like Object Structure 124

CMS Attributes 124

CMS Attributes 124
Content Type 124
Countersignature 125
MAC Value 125
Message Digest 126
Signing Time 126

Extended CMS Attributes 126
AuthentiCode Attributes 126
Content Hints 127
Mail List Expansion History 128
Receipt Request 128
Security Label, Equivalent Label 128
S/MIME Capabilities 129
Signing Certificate 130

S/MIME 131
S/MIME Enveloping 131

Encrypted Enveloping 132
Digitally Signed Enveloping 132
Detached Signatures 133
Extra Signature Information 135

From Envelopes to S/MIME 136

S/MIME Content Types 136
Data 136
Signed Data 136
Detached Signature 137
Encrypted Data 137
Nested Content 137

Implementing S/MIME using cryptlib 138
Example: c-client/IMAP4 138

cryptlib Overview v

Example: Eudora 138
Example: MAPI 138
Example: Windows’95/98 and NT Shell 139

ENCRYPTION DEVICES AND MODULES 140
Creating/Destroying Device Objects 140

Activating and Controlling Cryptographic Devices 141
Initialise Device 141
User Authentication 141
Zeroise Device 142

Extended Device Control Functions 142
Setting/Changing User Authentication Values 142

Working with Device Objects 142
Key Storage in Crypto Devices 143
Considerations when Working with Devices 143

PKCS #11 Devices 144
Installing New PKCS #11 Modules 144
PKCS #11 Functions used by cryptlib 145

MISCELLANEOUS TOPICS 146
Querying cryptlib’s Capabilities 146

Working with Configuration Options 146
Querying/Setting Configuration Options 149
Saving Configuration Options 150

Obtaining Information About Cryptlib 151

Random Numbers 151
Gathering Random Information 151
Obtaining Random Numbers 152
Random Information Gathering Techniques 152
Hardware Random Number Generation 156

Working with Newer Versions of cryptlib 156

ERROR HANDLING 158
Extended Error Reporting 160

ALGORITHMS AND MODES 163
Blowfish 163

CAST-128 163

DES 163

Triple DES 163

Diffie-Hellman 163

DSA 163

ElGamal 164

HMAC-MD5 164

HMAC-SHA1 164

HMAC-RIPEMD-160 164

IDEA 164

MD2 165

MD4 165

MD5 165

MDC2 165

RC2 165

RC4 166

RC5 166

Introductionvi

RIPEMD-160 166

RSA 166

SAFER 166

SAFER-SK 166

SHA 166

Skipjack 166

DATA TYPES AND CONSTANTS 167
CRYPT_ALGO 167

CRYPT_ATTRIBUTE_TYPE 168

CRYPT_CERTFORMAT_TYPE 168

CRYPT_CERTTYPE_TYPE 168

CRYPT_DEVICE_TYPE 169

CRYPT_FORMAT_TYPE 169

CRYPT_KEYID_TYPE 169

CRYPT_KEYOPT 170

CRYPT_KEYSET_TYPE 170

CRYPT_MODE 170

CRYPT_OBJECT_TYPE 171

Data Size Constants 171

Miscellaneous Constants 172

DATA STRUCTURES 173
CRYPT_OBJECT_INFO Structure 173

CRYPT_PKCINFO Structures 173

CRYPT_QUERY_INFO Structure 174

FUNCTION REFERENCE 175
cryptAddCertExtension 175

cryptAddPrivateKey 175

cryptAddPublicKey 175

cryptAddRandom 176

cryptAsyncCancel 176

cryptAsyncQuery 176

cryptCheckCert 176

cryptCheckSignature 177

cryptCheckSignatureEx 177

cryptCreateCert 178

cryptCreateContext 178

cryptCreateEnvelope 178

cryptCreateSignature 179

cryptCreateSignatureEx 179

cryptDecrypt 180

cryptDeleteAttribute 180

cryptDeleteCertExtension 180

cryptDeleteKey 181

cryptDestroyCert 181

cryptDestroyContext 181

cryptDestroyEnvelope 182

cryptDestroyObject 182

cryptlib Overview vii

cryptDeviceClose 182

cryptDeviceControlEx 182

cryptDeviceCreateContext 183

cryptDeviceOpen 183

cryptEncrypt 183

cryptEnd 184

cryptExportCert 184

cryptExportKey 184

cryptExportKeyEx 185

cryptGenerateKey 186

cryptGenerateKeyAsync 186

cryptGenerateKeyAsyncEx 186

cryptGenerateKeyEx 187

cryptGetAttribute 187

cryptGetAttributeString 188

cryptGetCertExtension 188

cryptGetPrivateKey 189

cryptGetPublicKey 189

cryptImportCert 190

cryptImportKey 190

cryptImportKeyEx 190

cryptInit 191

cryptInitEx 191

cryptKeysetClose 191

cryptKeysetOpen 191

cryptKeysetOpenEx 192

cryptPopData 192

cryptPushData 193

cryptQueryCapability 193

cryptQueryDeviceCapability 194

cryptQueryObject 194

cryptSetAttribute 194

cryptSetAttributeString 195

cryptSignCert 195

STANDARDS CONFORMANCE 196
Blowfish 196
CAST-128 196
DES 196
Triple DES 197
Diffie-Hellman 197
DSA 197
Elgamal 197
HMAC-MD5 198
HMAC-SHA1 198
IDEA 198
MD2 198
MD4 198
MD5 199
MDC-2 199
RC2 199
RC4 199

Introductionviii

RC5 199
RIPEMD-160 200
RSA 200
SHA/SHA1 200
Safer/Safer-SK 200
Skipjack 201
Certificates 201
Data Structures 201
S/MIME 201
Y2K Compliance 202
General 202

ACKNOWLEDGEMENTS 203

cryptlib Overview 1

Introduction
The information age has seen the development of electronic pathways which carry
vast amounts of valuable commercial, scientific, and educational information between
financial institutions, companies, individuals, and government organisations.
Unfortunately the unprecedented levels of access provided by systems like the
Internet also expose this data to breaches of confidentiality, disruption of service, and
outright theft. As a result, there is an enormous (and still growing) demand for the
means to secure these online transactions. One report by the Computer Systems
Policy Project (a consortium of virtually every large US computer company,
including Apple, AT&T, Compaq, Digital, IBM, Silicon Graphics, Sun, and Unisys)
estimates that the potential revenue arising from these security requirements in the
US alone could be as much as US$30-60 billion by the year 2000, and the potential
exposure to global users from a lack of this security is projected to reach between
US$320 and 640 billion by the year 2000.

Unfortunately the security systems required to protect data are generally extremely
difficult to design and implement, and even when available tend to require
considerable understanding of the underlying principles in order to be used. This has
lead to a proliferation of “snake oil” products which offer only illusionary security, or
to organisations holding back from deploying online information systems because the
means to secure them aren’t readily available, or (in the case of US products) because
they employ weak, easily broken security which is unacceptable to users.

The cryptlib security toolkit is one answer to this problem. A complete description of
the capabilities provided by cryptlib is given below.

cryptlib Overview
cryptlib is a powerful security toolkit which allows even inexperienced crypto
programmers to easily add encryption and authentication security services to their
software. The high-level interface provides anyone with the ability to add strong
encryption and authentication capabilities to an application in as little as half an hour,
without needing to know any of the low-level details which make the encryption or
authentication work. Because of this, cryptlib dramatically reduces the cost involved
in adding security to new or existing applications.

cryptlib provides a transparent and consistent interface to a number of widely-used
security services and algorithms which are accessed through a straightforward,
standardised interface with parameters such as the algorithm and key size being
selectable by the user. Included as core components are implementations of the most
popular encryption and authentication algorithms, Blowfish, CAST, DES, triple DES,
IDEA, RC2, RC4, RC5, Safer, Safer-SK, and Skipjack conventional encryption,
MD2, MD4, MD5, MDC-2, RIPEMD-160 and SHA hash algorithms, HMAC-MD5,
HMAC-SHA, and HMAC-RIPEMD-160 MAC algorithms, and Diffie-Hellman,
DSA, ElGamal, and RSA public-key encryption, with elliptic-curve encryption
currently under development. The algorithm parameters are summarised below:

Algorithm Key size Block size
Blowfish 448 64
CAST-128 128 64
DES 56 64
Triple DES 112 / 168 64
IDEA 128 64
RC2 1024 64
RC4 2048 8
RC5 832 64
Safer 128 64
Safer-SK 128 64
Skipjack 80 64
MD2 — 128

Introduction2

Algorithm Key size Block size
MD4 — 128
MD5 — 128
MDC-2 — 128
RIPEMD-160 — 160
SHA — 160
HMAC-MD5 128 128
HMAC-SHA 160 160
HMAC-RIPEMD-160 160 160
Diffie-Hellman 4096 —
DSA 40961 —
ElGamal 4096 —
RSA 4096 —

Unlike similar products sourced from the US, cryptlib contains no deliberately
weakened encryption or backdoors, and allows worldwide use of keys of up to 4096
bits. In contrast products originating from the US contain either extremely weak
encryption with keys a mere 40 bits in length (sometimes referred to as “8-cent keys”
in reference to the cost of breaking one key), or, if they use longer keys, are required
to contain backdoors which allow easy access by the US government (and, by
extension, US business interests) to all data “protected” by the encryption. This
makes US products unsuited for protecting sensitive, confidential data, and gives
cryptlib an automatic advantage over all US products.

cryptlib features
cryptlib provides a standardised interface to a number of popular encryption
algorithms, as well as providing a high-level interface which hides most of the
implementation details and provides an operating-system-independent encoding
method which makes it easy to transfer secured data from one operating environment
to another. Although use of the high-level interface is recommended, experienced
programmers can directly access the lower-level encryption routines for
implementing custom encryption protocols or methods not directly provided by
cryptlib.

Programming Interface
The application programming interface (API) serves as an interface to a range of
plug-in encryption modules which allow encryption algorithms to be added in a fairly
transparent manner, so that adding a new algorithm or replacing an existing software
implementation with custom encryption hardware can be done without any trouble.
The standardised API allows any of the algorithms and modes supported by cryptlib
to be used with a minimum of coding effort. In addition the easy-to-use high-level
routines allow for the exchange of encrypted session keys and data and the creation
and checking of digital signatures with a minimum of programming overhead.

cryptlib has been written to be as foolproof as possible. On initialization it performs
extensive self-testing against test data from encryption standards documents, and the
API’s check each parameter and function call for errors before any actions are
performed, with error reporting down to the level of individual parameters. In
addition logical errors such as, for example, a key exchange function being called in
the wrong sequence, are checked for and identified.

Standards Compliance
All algorithms, security methods, and data encoding systems in cryptlib either comply
with one or more national and international banking and security standards, or are
implemented and tested to conform to a reference implementation of a particular

1 The DSA standard only defines key sizes from 512 to 1024 bits, cryptlib supports longer keys but there is no
extra security to be gained from using these keys.

cryptlib features 3

algorithm or security system. Compliance with national and international security
standards is automatically provided when cryptlib is integrated into an application.
These standards include ANSI X3.92, ANSI X3.106, ANSI X9.9, ANSI X9.17, ANSI
X9.30-1, ANSI X9.30-2, ANSI X9.31-1, ANSI X9.42, ANSI X9.52, FIPS PUB 46-2,
FIPS PUB 46-3, FIPS PUB 74, FIPS PUB 81, FIPS PUB 113, FIPS PUB 180, FIPS
PUB 180-1, FIPS PUB 186, ISO/IEC 8372, ISO/IEC 8731 ISO/IEC 8732, ISO/IEC
8824/ITU-T X.680, ISO/IEC 8825/ITU-T X.690, ISO/IEC 9797, ISO/IEC 10116,
ISO/IEC 10118, PKCS #1, PKCS #3, PKCS #7, PKCS #9, PKCS #10, RFC 1319,
RFC 1320, RFC 1321, RFC 1750, RFC 2040, RFC 2104, RFC 2144, RFC 2268, RFC
2312, RFC 2313, RFC 2314, RFC 2315, RFC 2459, RFC 2528, RFC 2585, RFC
2630, RFC 2631, RFC 2632, and RFC 2634. Because of the use of internationally
recognised and standardised security algorithms, cryptlib users will avoid the
problems caused by homegrown, proprietary algorithms and security techniques
which often fail to provide any protection against attackers, resulting in embarrassing
bad publicity and expensive software recalls.

Y2K Compliance
cryptlib handles all date information using the ANSI/ISO C time format which does
not suffer from Y2K problems. Although earlier versions of the X.509 certificate
format do have Y2K problems, cryptlib transparently converts the date encoded in
certificates to and from the ANSI/ISO format, so cryptlib users will never see this.
cryptlib’s own time/date format is not affected by any Y2K problems, and cryptlib
itself conforms to the requirements in the British Standards Institutions DISC
PD2000-1:1998 Y2K compliance standard.

Encrypted Object Management
cryptlibs powerful object management interface provides the ability to add encryption
and authentication capabilities to an application without needing to know all the low-
level details which make the encryption or authentication work. The automatic
object-management routines take care of encoding issues and cross-platform
portability problems, so that a single function call is enough to export a public-key
encrypted session key with all the associated information and parameters needed to
recreate the session key on the other side of a communications channel, or to generate
a digital signature on a piece of data. This provides a considerable advantage over
other encryption toolkits which often require hundreds of lines of code and the
manipulation of complex encryption data structures to perform the same task.

S/MIME
cryptlib employs the IETF-standardised Cryptographic Message Syntax (CMS,
formerly called PKCS #7) format as its native data format. CMS is the underlying
format used in the S/MIME secure mail standard, as well as a number of other
standards covering secure EDI and related systems like HL7 messaging. As an
example of its use in secure EDI, cryptlib provides security services for the
Sypmhonia EDI messaging toolkit which is used to communicate medical lab reports,
patient data, drug prescription information, and similar information requiring a high
level of security.

The S/MIME implementation uses cryptlibs enveloping interface which allows
simple, rapid integration of strong encryption and authentication capabilities into
existing email agents and messaging software. The resulting signed data format
provides message integrity and origin authentication services, the enveloped data
format provides confidentiality. The complexity of the S/MIME format means that
the few other toolkits which are available require a high level of programmer
knowledge of S/MIME processing issues. In contrast cryptlib’s enveloping interface
makes the process as simple as pushing raw data into an envelope and popping the
processed data back out, a total of three function calls, plus one more call to add the
appropriate encryption or signature key.

Introduction4

Certificate Management
cryptlib implements full X.509 certificate support, including all X.509 version 3
extensions as well as extensions defined in the IETF PKIX certificate profile. cryptlib
also supports additional certificate types and extensions including SET certificates,
Microsoft AuthentiCode and Netscape and Microsoft server-gated crypto certificates,
S/MIME and SSL client and server certificates, and various vendor-specific
extensions such as Netscape certificate types and the Thawte secure extranet.

In addition to certificate handling, cryptlib allows the generation of PKCS #10
certification requests with CMMF extensions suitable for submission to certification
authorities (CA’s) in order to obtain a certificate. Since cryptlib is itself capable of
processing certification requests into certificates, it is also possible to use cryptlib to
provide full CA services. cryptlib also supports the creating and handling of the
certificate chains required for S/MIME, SSL, and other applications, and the creation
of certificate revocation lists (CRL’s) with the capability to check certificates against
existing or new CRL’s either automatically or under programmer control.

cryptlib can import and export certification requests, certificates, and CRL’s in
straight binary format, as PKCS #7 certificate chains, and as Netscape certificate
sequences, with or without base64 armouring. This covers the majority of certificate
and certificate transport formats used by a wide variety of software such as web
browsers and servers.

The certificate types which are supported include:

• Basic X.509 version 1 certificates

• Extended X.509 version 3 certificates

• SSL server and client certificates

• S/MIME email certificates

• SET certificiates

• AuthentiCode code signing certificates

• IPSEC server, client, end-user, and tunneling certificates

• Server-gated crypto certificates

• Timestamping certificates

In addition cryptlib supports all X.509v3, IETF, S/MIME, and SET certificate
extensions and a many vendor-specific extensions including ones covering public and
private key usage, certificate policies, path and name constraints, policy constraints
and mappings, and alternative names and other identifiers. This comprehensive
coverage makes cryptlib a single solution for almost all certificate processing
requirements.

To handle certificate trust and revocation issues, cryptlib includes a certificate trust
manager which can be used to automatically manage CA trust settings, for example a
CA can be designated as a trusted issuer which will allow cryptlib to automatically
evaluate trust along certificate chains. Similarly, cryptlib can automatically check
certificates against CRL’s published by CA’s, removing from the user the need to
perform complex manual checking.

Key Database Interface
cryptlib utilizes commercial-strength RDBMS’s to store keys in the internationally
standardised X.509 format. The key database integrates seamlessly into existing
databases and can be managed using existing tools. For example a key database
stored on an MS SQL Server might be managed using Visual Basic or MS Access; a
key database stored on an Oracle server might be managed through SQL*Plus.
cryptlib currently supports mSQL, MySQL, Oracle, and Postgres databases under
Unix, and most databases which can be accessed through Windows ODBC drivers.

cryptlib features 5

This includes MS Access, dBase, Oracle, Paradox, MS SQL Server, and many more.
Extending the interface to support new database types requires approximately 200
lines of code to tie the cryptlib routines into a particular database backend.

In addition to key databases, cryptlib supports the storage and retrieval of certificates
in LDAP directories. This interface provides full LDAPv3 support, with optional
SSL protection of the connection to the directory. cryptlib also supports HTTP
access for keys accessible via the web, as well as external flat-file key collections
such as PGP key rings. The key collections may be freely mixed (so for example a
private key could be stored in a disk file, a PGP keyring or on a smart card with the
corresponding X.509 public key certificate being stored in an Oracle or SQL Server
database, an LDAP directory, or on the web).

Private keys may be stored on disk encrypted with an algorithm such as triple DES
(selectable by the user), with the password processed using several hundred iterations
of a hashing algorithm such as SHA-1 (also selectable by the user). Where the
operating system supports it, cryptlib will apply system security features such as
ACL’s under Windows NT and file permissions under Unix to the private key file to
further restrict access.

Smart Card Support
cryptlib allows private keys to be stored on a variety of smart cards accessed through
a selection of smart card readers — use of cryptlib won’t tie you to a single card or
reader vendor. As an extra precaution, cryptlib encrypts all data written to the smart
card so that even if the card is hacked, the data remains secure. Support for new
smart card types and/or readers can be added on request.

Crypto Devices
In addition to its built-in capabilities, cryptlib can make use of the crypto capabilities
of a variety of external crypto devices such as:

• Hardware crypto accelerators

• Fortezza cards

• PKCS #11 devices

• Crypto smart cards

cryptlib provides full crypto device management capabilities, allowing you to
initialise and program a crypto device, generate or load keys into it, add certificates
for the generated/loaded keys, update and change PINs, and perform other
management functions. For Fortezza cards, cryptlib provides full certificate authority
workstation (CAW) capabilities.

In addition, the crypto device interface provides a convenient general-purpose plug-in
capability for adding new functionality which will be automatically used by cryptlib
in its higher-level routines which handle key management, digital signatures, and
message encryption.

Security Features
cryptlib is built around a security kernel with Orange Book B3-level security features
to implement its security mechanisms. This kernel provides the interface between the
outside world and the architecture’s objects (intra-object security) and between the
objects themselves (interobject security). The security kernel is the basis of the entire
cryptlib architecture — all objects are accessed and controlled through it, and all
object attributes are manipulated through it. The kernel is implemented as an
interface layer which sits on top of the objects, monitoring all accesses and handling
all protection functions.

Each cryptlib object is contained entirely within the security perimeter, so that data
and control information can only flow in and out in a very tightly-controlled manner,

Introduction6

and that objects are isolated from each other within the perimeter by the security
kernel. For example once keying information has been sent to an object, it can’t be
retrieved by the user except under tightly-controlled conditions (the only real case
where this can occur is when an object’s access control list (ACL) permits a short-
term session key to be exported in encrypted form, or a private key to be stored in
encrypted form to a permanent storage medium such as a smart card or disk). In
general keying information isn’t even visible to the user, since it is generated inside
the object itself and never leaves the security perimeter. This design is ideally
matched to hardware implementations which perform strict red/black separation,
since sensitive information can never leave the hardware.

Associated with each object is a mandatory ACL which determines who can access a
particular object and under which conditions the access is allowed. At a very coarse
level, each object has a mandatory access control setting which determines whether it
is externally visible or not (that is, whether it has a handle which is valid outside the
security perimeter). Only externally visible objects can be (directly) manipulated by
the user, with ACL enforcement being handled by the architectures security kernel.

Operating at a much finer level of control than the object ACL is the discretionary
access control (DACL) mechanism through which only certain capabilities in an
object may be enabled. For example once an encryption context is established, it can
be restricted to only allow basic data encryption and decryption, but not encrypted
session key export.

If the operating system supports it, all sensitive information used will be page-locked
to ensure it is never swapped to disk from where it could be recovered using a disk
editor. All memory corresponding to security-related data is managed by cryptlib and
will be automatically sanitized and freed when cryptlib shuts down even if the calling
program forgets to release the memory itself.

Where the operating system supports it, cryptlib will apply operating system security
features to any objects it creates or manages. For example under Windows NT
cryptlib private key files will be created with an access control list (ACL) which
allows only the key owner access to the file; under Unix the file permissions will be
set to achieve the same result.

Performance
cryptlib is re-entrant and completely thread-safe, allowing it to be used with
multithreaded applications under Windows 95/98 and Windows NT, OS/2, and Unix
systems which support threads. Because it is thread-safe, lengthy cryptlib operations
can be run in the background if required while other processing is performed in the
foreground. In addition cryptlib itself is multithreaded so that computationally
intensive internal operations take place in the background without impacting the
performance of the calling application.

Most of the core algorithms used in cryptlib have been implemented in assembly
language in order to provide the maximum possible performance. These routines
provide an unprecedented level of performance, in some cases running faster than
expensive, specialised encryption hardware designed to perform the same task. This
means cryptlib can be used for high-bandwidth applications such as video/audio
encryption and online network and disk encryption without the need to resort to
expensive, hard-to-get encryption hardware.

Cryptographic Random Number Management
cryptlib contains an internal secure random data management system which provides
the cryptographically strong random data used to generate session keys and
public/private keys, in public-key encryption operations, and in various other areas
which require secure random data. The random data pool is updated with
unpredictable process-specific information as well as system-wide data such as
current disk I/O and paging statistics, network, SMB, LAN manager, and NFS traffic,
packet filter statistics, multiprocessor statistics, process information, users, VM

Document conventions 7

statistics, process statistics, open files, inodes, terminals, vector processors, streams,
and loaded code, objects in the global heap, loaded modules, running threads,
process, and tasks, and an equally large number of system performance-related
statistics covering virtually every aspect of the operation of the system.

The exact data collected depends on the hardware and operating system, but generally
includes quite detailed operating statistics and information. In addition if a
/dev/random -style randomness driver (which continually accumulates random
data from the system) is available, cryptlib will use this is a source of randomness.
Finally, cryptlib supports a number of cryptographically strong hardware random
number generators such as the Protego SG100 and various serial-port-based
generators which can be used to supplement or replace the internal generator. This
level of secure random number management ensures that security problems such as
those present in Netscape’s web browser (which allowed encryption keys to be
predicted without breaking the encryption because the random data gathered wasn’t at
all random) can’t occur with cryptlib.

Configuration Options
cryptlib works with a configuration database which can be used to tune its operation
for different environments using the Windows registry or Unix rc files. This allows
a system administrator to set a consistent security policy (for example mandating the
use of 1024-bit public keys on a company-wide basis instead of the insecure 512-bit
keys used in most US-sourced products). These configuration options are then
automatically applied by cryptlib to operations such as key generation and data
encryption and signing, although they can be overridden on a per-application or per-
user basis if required.

Document conventions
This manual uses the following document conventions:

Example Description

capi.h This font is used for filenames.

cryptCreateContext Bold type indicates cryptlib function names.

value Words or portions of words in italics indicate
placeholders for information which you need to
supply.

if(i == 0) This font is used for sample code and operating
system commands.

Recommended Reading
One of the best books to help you understand how to use cryptlib is Network Security
by Charlie Kaufman, Radia Perlman, and Mike Speciner, which covers general
security principles, encryption techniques, and a number of potential cryptlib
applications such as X.400/X.500 security, PEM/S/MIME/PGP, Kerberos, and
various other security, authentication, and encryption techniques. The book also
contains a wealth of practical advice for anyone considering implementing a
cryptographic security system.

A tutorial in 8 parts totalling over 500 slides covering all aspects of encryption and
general network security, including encryption and security basics, algorithms, key
management and certificates, CA’s, certificate profiles and policies, PEM, PGP,
S/MIME, SSL, ssh, SET, smart cards, and a wide variety of related topics, is
available through http://www.cs.auckland.ac.nz/~pgut001/ .

In addition to this, there are a number of excellent books available which will help
you in understanding the operating principles behind cryptlib. The foremost of these
are Applied Cryptography by Bruce Schneier and the Handbook of Applied

Introduction8

Cryptography by Alfred Menezes, Paul van Oorschot, and Scott Vanstone. Applied
Cryptography provides an easy-to-read overview while the Handbook of Applied
Cryptography provides extremely comprehensive, in-depth coverage of the field.

For general coverage of computer security issues, Security in Computing by Charles
Pfleeger provides a good overview of security, access control, and secure operating
systems and databases, and also goes into a number of other areas such as ethical
issues which aren’t covered in most books on computer security.

Installing cryptlib for Windows 9

Installation
This chapter describes how to install cryptlib for a variety of operating systems.

Installing cryptlib for Windows
[Windows install procedure]

Installing from Source Code
If the precompiled version of cryptlib isn’t available or if you have source code
access, you can also install cryptlib from the source code, although this is somewhat
more work than using the precompiled version. Instructions on installing cryptlib
from source code are given below. Note that the versions which run on mainframe
systems aren’t kept as current as the more mainstream versions, and some will require
adaptation to match the configuration of a particular system. See the entry for the
particular mainframe operating system below for more information.

BeOS
The BeOS version of cryptlib can be built using a procedure which is mostly identical
to that given further down for Unix. The BeOS version uses the Unix makefile, to
change it for use with BeOS uncomment the marked lines at the start of the file.

DOS
The 16-bit DOS version of cryptlib can be built from the same files as the 16-bit
Windows version, so no separate makefile is provided. The resulting library is about
500K in size, and any attempt to use any high-level routines which require random
data will fail with a CRYPT_ERROR_RANDOM error code unless a
/dev/random -style driver is available because there isn’t any way to reliably
obtain random data under DOS. Using cryptlib under 16-bit DOS is possible, but not
recommended.

DOS32
The 32-bit DOS version of cryptlib can be built using the supplied makefile, which
requires the djgpp compiler. The DOS32 version of cryptlib uses the same 32-bit
assembly language code used by the Win32 and 80x86 Unix versions, so it runs
significantly faster than the 16-bit DOS version. Like the 16-bit DOS version, any
attempt to use the high-level key export routines will fail with a CRYPT_ERROR_-
RANDOM error code unless a /dev/random -style driver is available because there
isn’t any way to reliably obtain random data under DOS.

Macintosh
The Macintosh version of cryptlib can be built using the Metroworks Codewarrior
and the project file Mac_MWCW_Project.sit, which will build cryptlib as a shared
library. After you’ve built cryptlib, you should run the self-test program to make sure
everything is working OK.

MVS
The MVS version of cryptlib can be built using the standard C/370 compiler and
accompanying tools. The supplied JCL file MVSBUILD JOB can be used as a basis
for building cryptlib under MVS. Since MVS sites typically have significantly
different system configurations, this file and possibly portions of the source code will
require some tuning in order to adjust it to suit the build process normally used at
your site. After you’ve built cryptlib, you should run the self-test program to make
sure everything is working OK.

Installation10

OS2
The OS/2 version of cryptlib can be built using the command-line version of the IBM
compiler. The supplied makefile will build the DLL version of cryptlib, and can also
build the cryptlib self-test program, which is a console application. You should run
the self-test program after you’ve built cryptlib to make sure everything is working
OK.

If you are working with the IBM OS/2 compiler you should set enumerated types to
always be 32-bit values because the compiler by default uses variable-length types
depending on the enum range (so one enum could be an 8-bit type and another 32).
cryptlib is immune to this “feature”, and function calls from your code to cryptlib
should also be unaffected because of type promotion to 32-bit integers, but the
variable-range enums may cause problems in your code if you try to work with them
under the assumption that they have a fixed type.

VM/CMS
The VM/CMS version of cryptlib can be built using the standard C/370 compiler and
accompanying tools. The supplied EXEC2 file VMBUILD EXEC will build cryptlib
as a TXTLIB and then build the self-test program as an executable MODULE file.
Since VM sites typically have different system configurations, this file and possibly
portions of the source code may require tuning in order to adjust it to suit the build
process normally used at your site. You should run the self-test program after you’ve
built cryptlib to make sure everything is working OK.

Windows 3.x

The 16-bit cryptlib DLL can be built using the cl16.mak makefile, which is for
version 1.5x of the Visual C++ compiler. To use the files you should create a
network share pointing at the cryptlib root directory and then connect to the share and
work from that. This makes the makefile paths independent of the directory you put
the files in. For example you might want to share the directory as CRYPT, so you
could connect to it as \\machine\CRYPT and access the project file as
\\machine\CRYPT\CL16.MAK.

The mixed C/assembly language encryption and hashing code will give a number of
warnings, the remaining code should compile without warnings. Once the DLL has
been built, test.mak will build the cryptlib self-test program, which is a console
application. You should run this after you’ve built cryptlib to make sure everything is
working OK.

If you will be accessing certificates stored on web pages, you need to install the
required HTTP client software on your system. The cryplib package includes the
TCP4U HTTP DLL and will automatically detect and use this if present. If you don’t
enable the use of the HTTP interface, the self-test code will issue a warning that no
HTTP interface is present and continue without testing this interface

If you will be using special encryption hardware or an external encryption device
such as a PCMCIA card or smart card, you need to install the required device drivers
on your system, and if you’re using a generic PKCS #11 device you need to configure
the appropriate driver for it as described in “Encryption Devices and Modules” on
page 140. cryptlib will automatically detect and use any devices which it recognises
and which have drivers present. If you don’t enable the use of a crypto device, the
self-test code will issue a warning that no devices are present and continue without
testing the crypto device interface.

The use of the 16-bit DLL on a Windows’95/98 system is not recommended, as the
randomness-polling required by some of the high-level routines performs very poorly
in the emulated 16-bit environment. Under Windows NT 4, the 16-bit DLL may
cause a memory fault if a randomness poll is run because the polling process used
relies on the presence of certain Windows VxD components which don’t exist under
NT.

Installing from Source Code 11

Windows’95/98 and Windows NT

The 32-bit cryptlib DLL can be built using the crypt32.dsp and crypt32.dsw
make/project files, which are for version 6 of the Visual C++ compiler. To use the
files you should create a network share pointing at the cryptlib root directory and then
connect to the share and work from that. This makes the makefile paths independent
of the directory you put the files in. For example you might want to share the
directory as CRYPT, so you could connect to it as \\machine\CRYPT and access the
project file as \\machine\CRYPT\CRYPT32.DSW.

You may also need to rescan dependencies since Visual C++ handles makes in a
somewhat broken manner. Once the DLL has been built, test32.dsp will build the
cryptlib self-test program, which is a console application. You should run this after
you’ve built cryptlib to make sure everything is working OK.

If you will be using an LDAP directory, you need to install the required LDAP client
DLL on your system. The cryptlib package includes the Netscape LDAPv3 client
DLL and will automatically detect and use this if present. If you don’t enable the use
of an LDAP directory interface, the self-test code will issue a warning that no LDAP
directory is present and continue without testing the LDAP interface.

If you will be accessing certificates stored on web pages, you need to install the
required HTTP client software on your system. The cryplib package includes the
TCP4U HTTP DLL and will automatically detect and use this if present. If you don’t
enable the use of the HTTP interface, the self-test code will issue a warning that no
HTTP interface is present and continue without testing this interface

If you will be using special encryption hardware or an external encryption device
such as a PCMCIA card or smart card, you need to install the required device drivers
on your system, and if you’re using a generic PKCS #11 device you need to configure
the appropriate driver for it as described in “Encryption Devices and Modules” on
page 140. cryptlib will automatically detect and use any devices which it recognises
and which have drivers present. If you don’t enable the use of a crypto device, the
self-test code will issue a warning that no devices are present and continue without
testing the crypto device interface.

If you’re using Borland C++ rather than Visual C++, you’ll need to set up the .def
and .lib files for use with the Borland compiler. To do this, run the following
commands in the cryptlib directory:

impdef cl32 cl32
implib cl32 cl32.def

The first one will produce a Borland-specific .def file from the DLL, the second one
will produce a Borland-specific .lib file from the DLL and .def file.

Unix

To unzip the code under Unix use the -a option to ensure that the text files are
converted to the Unix format. The makefile by default will build the statically-linked
library when you invoke it with make. To build the shared library, use make
shared . Once cryptlib has been built, use make testlib to build the cryptlib
self-test program. For example to build the shared library and self-test program, you
would use make shared; make testlib . testlib will run fairly extensive self-
tests of cryptlib and you should run this after you’ve built it to make sure everything
is working OK. Depending on your system setup and privileges you may need to
either copy the shared library to /usr/lib or set the LD_LIBRARY_PATH
environment variable to make sure the shared library is used.

If you will be using a key database, you need to enable the use of the appropriate
interface module for the database backend. To do this, you need to define one or
more of DBX_MSQL, DBX_MYSQL, DBX_ORACLE, or DBX_POSTGRES (depending
on the database or databases you’re using) in the makefile before you build cryptlib.
You can do this by adding the appropriate defines (for example -DDBX_MSQL) to the

Installation12

CFLAGS or SCFLAGS setting at the start of the makefile, depending on whether
you’re building the static or shared library. In addition you also need to link the
database library or libraries (for example libmsql.a) into your executable. For the
cryptlib self-test code you can define the database libraries using the TESTLIBS
setting at the start of the makefile. If you don’t enable the use of a database interface,
the self-test code will issue a warning that no key database is present and continue
without testing the database interface.

If you will be using an LDAP directory, you need to install the required LDAP client
library on your system, define DBX_LDAP before you build cryptlib in the manner
described above for the database defines, and link the LDAP client library into your
executable. cryptlib uses the Netscape LDAPv3 client, and will automatically detect
the presence of the SSL or non-SSL version of the client depending on which one you
link in. If you don’t enable the use of an LDAP directory interface, the self-test code
will issue a warning that no LDAP directory is present and continue without testing
the LDAP interface.

If you will be accessing certificates stored on web pages, you need to install the
required HTTP library on your system, define DBX_HTTP before you build cryptlib
in the manner described above for the LDAP define, and link the HTTP client library
into your executable. cryptlib uses the TCP4U client which can be obtained from a
number of locations on the Internet. If you don’t enable the use of a the HTTP
interface, the self-test code will issue a warning that no HTTP interface is present and
continue without testing this interface.

If you will be using special encryption hardware or an external encryption device
such as a PCMCIA card or smart card, you need to install the required device drivers
on your system and enable their use when you build cryptlib by linking in the
required interface libraries. If you don’t enable the use of a crypto device, the self-
test code will issue a warning that no devices are present and continue without testing
the crypto device interface.

For any common Unix system, cryptlib will build without any problems, but in some
rare cases you may need to edit misc/rndunix.c and possibly keymgmt/stream.c if
you’re running an unusual Unix variant which puts include files in strange places or
has broken Posix support. If you get compile errors from misc/rndunix.c or
keymgmt/stream.c you may need to change the header files included near the start
of the file.

Other systems
cryptlib should be fairly portable to other systems, the only two parts which need
attention is the memory locking in cryptkrn.c (cryptlib will work without this, but
won’t be as secure as a version with memory locking because sensitive data may be
paged out to disk) and the randomness-gathering in misc/rndos_name.c (cryptlib
won’t work without this, the code will generate a compiler error). The idea behind
the randomness-gathering code is to perform a comprehensive poll of every possible
entropy source in the system in a separate thread or background task (“slowPoll”), as
well as providing a less useful but much faster poll of quick-response sources
(“fastPoll”).

To find out what to compile, look at the Unix makefile which contains all the
necessary source files (the group_name _OBJS dependencies) and compiler
options. Link all these into a library (as the makefile does) and then compile and link
testxxx.c modules in the test subdirectory with the library to create the self-test
program. There is additional assembly-language code included which will lead to
noticeable speedups on some systems, you should modify your build options as
appropriate to use these if possible.

Depending on your compiler you may get a few warnings about some of the
encryption and hashing code (one or two) and the bignum code (one or two). This
code mostly relates to the use of C as a high-level assembler and changing things

Installing from Source Code 13

around to remove the warnings on one system could cause the code to break on
another system.

Key Database Setup
If you want to work with a public key database, you need to configure a database for
cryptlib to use. Under Windows, go to the Control Panel and click on the
ODBC/ODBC32 item. Click on “Add” and select the ODBC data source (that is, the
database type) you want to use. If it’s on the local machine, this will probably be an
Access database, if it’s a centralised database on a network this will probably be SQL
Server. Once you’ve selected the data source type, you need to give it a name for
cryptlib to use. “Public Keys” is a good choice (the self-test code expects to find a
source called “testkeys” for use during the self-test procedure). In addition you may
need to set up other parameters like the server the database is located on and other
access information. Once the data source is set up, you can access it as a
CRYPT_KEYSET_ODBC keyset using the name you’ve assigned to it.

Under Unix, the database type you use will require a specific database interface to be
enabled in cryptlib. To enable the use of one of the cryptlib interfaces, you need to
define the appropriate DBX_name setting in misc/dbms.h and link in the appropriate
database library as described previously.

Certificate Installation
The PKCS #15 keyfile format currently exists only as a draft standard, until the final
version is published it won’t be possible to store certificate trust information because
the format for this is still subject to revision. Because of this, the –t option described
below doesn’t have any effect. It’s likely that when PKCS #15 is finalised the trusted
certs will be stored in a fixed config file, removing the need to store them in the
certificate database.

Before you use cryptlib, you should run the certificate installation program
certinst from the cryptlib directory. This will install default certification
authority (CA) certificates into a key database and update cryptlibs trust information
to make the certificates trusted by cryptlib. Without these standard certificates
installed and marked as trusted by cryptlib, it becomes difficult to automatically
verify signatures in certificate chains signed by widely-recognised CA’s such as
Verisign and Thawte.

To install the default certificates, run certinst with the option -it to install the
certificates and mark them as trusted and -n to specify the name of the key database
you want to use to store the certificates in. You can also make the certificates trusted
without installing them by only using the -i option. For example to install the
default certificates into the key database “Public Keys” and mark them as trusted, you
would use:

certinst -it -n"Public Keys"

Note that fact that the database name is quoted since it contains a space. To mark the
certificates as trusted without installing them, you would use:

certinst -t

To access the database you may also need to specify a user name and password (the
details depend on how the database has been configured). You can specify the
username with -u name and the password with -p password . For example to
install the certificates as before into a key database which only allows write access by
an administrator using the password “password”, you would use:

certinst -it -n"Public Keys" -uadministrator -ppassword

certinst has a number of other options, run it without any arguments for a help
screen.

Installation14

Cut-down cryptlib Versions
In some cases you may want to create a cut-down version of cryptlib which omits
certain algorithms because of size constraints or patent problems. You can do this by
building cryptlib with one or more NO_algorithmname preprocessor defines set to
exclude the use of that algorithm. The defines for algorithms which can be excluded
are NO_CAST, NO_ELGAMAL, NO_HMAC_MD5, NO_HMAC_RIPEMD160,
NO_IDEA, NO_MD4, NO_MDC2, NO_RC2, NO_RC4, NO_RC5, NO_SAFER, and
NO_SKIPJACK. This will remove any references to that algorithm from the code
and make it impossible to use. Most linkers will discard the low-level algorithm code
(since the remaining cryptlib code doesn’t reference it any more), but if you’re using
a more primitive linker you may need to explicitly remove references to the
appropriate files from the link phase. The files are the algorithm-specific lib_name
file and the matching files from the crypt or hash subdirectories, for example for
IDEA the files to remove are lib_idea.c and crypt/idea.c.

In addition to removing individual algorithms, you can also remove certain types of
functionality from cryptlib in order to reduce code size: NO_COMPRESSION will
remove support for compressed-data enveloping and NO_PGP will remove support
for handling of PGP keyrings and data.

Support for Vendor-specific Algorithms
cryptlib supports the use of vendor-specific algorithm types with the predefined
values CRYPT_ALGO_VENDOR1, CRYPT_ALGO_VENDOR2, and
CRYPT_ALGO_VENDOR3. For each of the algorithms you use, you need to add
the appropriate cryptlib capability definitions as used in cryptcap.c to a file called
vendalgo.c, which will be automatically compiled into cryptlib. Finally, rebuild
cryptlib with the preprocessor define USE_VENDOR_ALGOS set, which will
include the new algorithm types in cryptlibs capabilities.

For example if you wanted to add support for the Foo256 cipher to cryptlib you
would create the file vendalgo.c containing the capability definitions and then
rebuild cryptlib with USE_VENDOR_ALGOS defined. The Foo256 algorithm
would then become available as algorithm type CRYPT_ALGO_VENDOR1.

Programming interfaces 15

cryptlib Basics
cryptlib works with two classes of objects, container objects and action objects. A
container object is an object which contains one or more items such as data, keys or
certificates. An action object is an object which is used to perform an action such as
encrypting or signing data. The container types used in cryptlib are envelopes (for
data), sessions (for communications sessions), keysets (for keys), and certificates (for
attributes such as key usage restrictions and signature information). Container
objects can have items such as data or public/private keys placed in them and
retrieved from them. In addition to containing data or keys, container objects can
also contain other objects which affect the behaviour of the container object. For
example pushing an encryption object into an envelope container object will result in
all data which is pushed into the envelope being encrypted or decrypted using the
encryption object.

The action object types used in cryptlib are encryption contexts (for encryption/
hashing/digital signatures). Action objects are used to act on data, for example to
encrypt or decrypt a piece of data or to digitally sign or check the signature on a piece
of data.

The usual mechanism for processing data is to use the envelope container object. The
process of pushing data into an envelope and popping the processed data back out is
known as enveloping the data. The reverse process is known as de-enveloping the
data. The first section of this manual covers the basics of enveloping data, which
introduces the enveloping mechanism and covers various aspects of the enveloping
process such as processing data streams of unknown length and handling errors.
Once you have the code to perform basic enveloping in place, you can add extra
functionality such as password-based data encryption to the processing.

Once the basic concepts behind enveloping have been explained, more advanced
techniques such as public-key based enveloping and digital signature enveloping are
covered. The use of public keys for enveloping requires the use of key management
functions, and the next section covers storing and retrieving keys from keyset objects.

So far all the objects which have been covered are container objects. The next
section covers the creation of action objects which you can either push into a
container object or apply directly to data, including the various ways of loading or
generating keys into them. The next three sections explain how to apply the action
objects to data and cover the process of encryption, key exchange, and signature
generation and verification.

The public portions of public/private key pairs are typically managed using X.509
certificates and certificate revocation lists. The next three sections cover certificates,
certificate extensions and attributes, and the management of certificates including
certificate creation, certificate chains, and certificate revocation list (CRL) creation
and checking. This covers the full key life cycle from creation through certification
to revocation and/or destruction.

Once certificate management is in place, it’s possible to use cryptlib envelopes to
process S/MIME messages. The next two sections cover the creation and handling of
S/MIME messages using the same enveloping mechanisms which were covered
earlier.

The next section covers the use of encryption devices such as smart cards and
Fortezza cards, and explains how to use them to perform many of the tasks covered in
previous sections. Finally, the last section covers miscellaneous topics such as
random number management and the cryptlib configuration database.

Programming interfaces
cryptlib provides three levels of interface, of which the highest-level one is the easiest
to use and therefore the recommended one. At this level cryptlib works with

cryptlib Basics16

envelope and session container objects, an abstract object into which you can insert
and remove data which is processed as required while it is in the object (this is
explained in more detail below). Using envelopes requires no knowledge of
encryption or digital signature techniques. At an intermediate level, cryptlib works
with encryption action objects, and requires some knowledge of encryption
techniques. In addition you will need to handle some of the management of the
encryption objects yourself. At the very lowest level cryptlib works directly with the
encryption action objects and requires you to know about algorithm details (which
can be queried from cryptlib) and key and data management methods.

Before you begin you should decide which interface you want to use, as each one has
its own distinct advantages and disadvantages. The three interfaces are:

Container object interface
This interface requires no knowledge of encryption and digital signature techniques,
and is easiest for use with languages like Visual Basic which don’t interface to C data
structures very well. The container object interface provides services to create and
destroy envelopes and secure sessions, to add security attributes such as encryption
information and signature keys to a container object, and to move data into and out of
a container.

Mid-level interface
This interface requires some knowledge of encryption and digital signature
techniques. Because it handles encoding of things like session keys and digital
signatures but not of the data itself, it is better suited for applications which require
high-speed data encryption, or encryption of many small data packets (such as an
encrypted terminal session). The container object interface is built on top of this
interface. The mid-level interface provides services such as routines to export and
import encrypted keys and to create and check digital signatures.

Action object interface
This interface requires quite a bit of knowledge of encryption and digital signature
techniques. It provides a direct interface to the raw encryption capabilities of
cryptlib. The only real reason for using the low-level routines is if you need them as
building blocks for your own custom encryption protocol. The mid-level interface is
built on top of this interface. The low-level interface serves as an interface to a range
of plug-in encryption modules which allow encryption algorithms to be added in a
fairly transparent manner, with a standardised interface allowing any of the
algorithms and modes supported by cryptlib to be used with a minimum of coding
effort. As such the main function of the action object interface is to provide a
standard, portable, easy-to-use interface between the underlying encryption routines
and the user software.

Objects and Interfaces
The cryptlib object types are key certificate objects of type CRYPT_CERTIFICATE
which usually contain a key certificate for an individual or organisation but can also
contain other information such as certificate chains or digital signature attributes,
encryption context objects of type CRYPT_CONTEXT which contain encryption or
digital signature key information, envelope container objects of type
CRYPT_ENVELOPE which provide an abstract container for performing encryption
and security-related operations on an item of data, key collection container objects of
type CRYPT_KEYSET which contain collections of public or private keys, and
secure session objects of type CRYPT_SESSION which manage a secure session
with a server or client. Finally, there are device objects of type CRYPT_DEVICE
which provide a mechanism for working with crypto devices such as crypto hardware
accelerators and PCMCIA and smart cards.

Objects and Attributes 17

These objects are referred to via arbitrary integer values, or handles, which have no
meaning outside of cryptlib. All data pertaining to an object is managed internally by
cryptlib, with no outside access to security-related information being possible. There
is also a generic object handle of type CRYPT_HANDLE which is used in cases
where the exact type of an object is not important. For example most cryptlib
functions which require keys can work with either encryption contexts or key
certificate objects, so the objects they use have a generic CRYPT_HANDLE which is
equivalent to either a CRYPT_CONTEXT or a CRYPT_CERTIFICATE.

Objects and Attributes
Each cryptlib object has a number of attributes of type CRYPT_ATTRIBUTE_TYPE
which you can read, write, and in some cases delete. For example an encryption
context would have a key attribute, a certificate would have issuer name and validity
attributes, and an envelope would have attributes such as passwords or signature
information, depending on the type of the envelope. Most cryptlib objects are
controlled by manipulating these attributes.

The attribute classes are CRYPT_ATTRIBUTE_name for generic attributes,
CRYPT_CERTINFO_name for certificate attributes, CRYPT_CTXINFO_name for
encryption context attributes, CRYPT_DEVINFO_name for device attributes,
CRYPT_ENVINFO_name for envelope attributes, CRYPT_KEYSETINFO_name
for keyset attributes, CRYPT_OPTION_name for global configuration options,
CRYPT_PROPERTY_name for object properties, and CRYPT_SESSINFO_name for
session attributes. Some of the attributes apply only to a particular object type but
others may apply across multiple objects (for example a certificate contains a public
key, so the key size attribute, which is normally associated with a context, would also
apply to a certificate). To determine the key size for the key in a certificate, you
would read its key size attribute as if it were an encryption context.

Attribute data is either a single numeric value or variable-length data consisting of a
(data, length) pair. Numeric attribute values are used for objects, boolean values,and
integers. Variable-length data attribute values are used for text strings, binary data
blobs, and representations of time (which uses the ANSI/ISO standard seconds-since-
1970 format).

Interfacing with cryptlib
All necessary constants, types, structures, and function prototypes are defined in the
header file cryptlib.h (for C and C++), cryptlib.bas (for Visual Basic), or
cryptlib.pas (for Delphi). You need to include one of these files in each module
which makes use of cryptlib. Although the examples given in this manual are for
C/C++, they apply equally for the other languages.

Initialisation
Before you can use any of the cryptlib functions, you need to call the cryptInit
function to initialise cryptlib. You also need to call its companion function cryptEnd
at the end of your program. cryptInit initializes cryptlib for use, and cryptEnd
performs various cleanup functions including automatic garbage collection of any
objects you may have forgotten to destroy. You don’t have to worry about
inadvertently calling cryptInit multiple times (for example if you’re calling it from
multiple threads), it will handle the initialisation correctly.

If you call cryptEnd and there are still objects in existence, it will return CRYPT_-
ERROR_INCOMPLETE to inform you that there were leftover objects present.
cryptlib can tell this because it keeps track of each object so it can erase any sensitive
data which may be present in the object (cryptEnd will return a CRYPT_ERROR_-
INCOMPLETE error to warn you, but will nevertheless clean up and free each object
for you).

cryptlib Basics18

To make the use of cryptEnd in a C or C++ program easier, you may want to use the
C atexit() function or add a call to cryptEnd to a C++ destructor in order to have
cryptEnd called automatically when your program exits.

Any use of cryptlib will then be as follows:

#include "cryptlib.h"

cryptInit();

/* Calls to cryptlib routines */

cryptEnd();

If you’re going to be doing something which needs encryption keys, you should also
perform a randomness poll fairly early on to give cryptlib enough random data to
create keys:

cryptAddRandom(NULL, CRYPT_RANDOM_SLOWPOLL);

The randomness poll executes asynchronously, so it won’t stall the rest of your code
while it’s running.

Working with Object Attributes
All object attributes are read, written, and deleted using a common set of functions:
cryptGetAttribute /cryptGetAttributeString to get the value of an attribute,
cryptSetAttribute /cryptSetAttributeString to set the value of an attribute, and
cryptDeleteAttribute to delete an attribute. Attribute deletion is only valid for a
small subset of attributes for which it makes sense, for example you can delete the
validity date attribute from a certificate before the certificate is signed but not after
it’s signed, and you can never delete the algorithm type attribute from an encryption
context.

cryptGetAttribute and cryptSetAttribute take as argument an integer value or a
pointer to a location to receive an integer value:

int keySize;

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_PUBLICKEY, cryptKey);
cryptGetAttribute(cryptContext, CRYPT_CTXINFO_KEYSIZE, &keySize);

cryptGetAttributeString and cryptSetAttributeString take as argument a pointer
to the data value to get or set and a length value or pointer to a location to receive the
length value:

char emailAddress[128]
int emailAddressLength;

cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,
"1234", 4);

cryptGetAttributeString(cryptCertificate, CRYPT_CERTINFO_RFC822NAME,
emailAddress, &emailAddressLength);

This leads to a small problem: How do you know how big to make the buffer? The
answer is to use cryptGetAttributeString to tell you. If you pass in a null pointer
for the data value, the function will set the length value to the size of the data, but not
do anything else. You can then use code like:

char *emailAddress;
int emailAddressLength;

cryptGetAttributeString(cryptCertificate, CRYPT_CERTINFO_RFC822NAME,
NULL, &emailAddressLength);

emailAddress = malloc(emailAddressLength);
cryptGetAttributeString(cryptCertificate, CRYPT_CERTINFO_RFC822NAME,

emailAddress, &emailAddressLength);

to obtain the data value. In most cases this two-step process isn’t necessary, the
standards cryptlib conforms to generally place limits on the size of most attributes so
that cryptlib will never return more data than the fixed limit. For example most
strings in certificates are limited to a maximum length set by the CRYPT_MAX_-

Working with Object Attributes 19

TEXTSIZE constant. More information on these sizes is given with the descriptions
of the attributes.

Finally, cryptDeleteAttribute lets you delete an attribute in the cases where that’s
possible:

cryptDeleteAttribute(cryptCertificate, CRYPT_CERTINFO_VALIDFROM);

All access to objects and object attributes is enforced by cryptlib’s security kernel. If
you try to access or manipulate an attribute in a manner which isn’t allowed (for
example by trying to read a write-only attribute, trying to assign a string value to a
numeric attribute, trying to delete an attribute which can’t be deleted, trying to set a
certificate-specific attribute for an envelope, or some similar action) cryptlib will
return an error code to tell you that this type of access is invalid. If there’s a problem
with the object you’re trying to manipulate, cryptlib will return CRYPT_ERROR_-
PARAM1 to tell you that the object handle parameter passed to the function is
invalid. If there’s a problem with the attribute type (typically because it’s invalid for
this object type) cryptlib will return CRYPT_ERROR_PARAM2. If there’s a
problem with the attribute value, cryptlib will return CRYPT_ERROR_PARAM3,
and if there’s a problem with the length (for thje functions which take a length
parameter) cryptlib will return CRYPT_ERROR_PARAM4. If you try to perform an
attribute access which is disallowed (reading an attribute which can’t be read, writing
to or deleting a read-only attribute, or something similar) cryptlib will return
CRYPT_ERROR_PERMISSION. If you try to delete an attribute which isn’t set,
cryptlib will return CRYPT_ERROR_NOTFOUND.

Attribute Types
Attribute values can be boolean or numeric values, text strings, or binary data:

Type Description

Binary A binary data string which can contain almost anything.

Boolean Flags which can be set to ‘true’ (any nonzero value) or ‘false’
(a zero value) and which control whether a certain option or
operation is enabled or not (note that cryptlib uses the value 1
to represent ‘true’, some languages may represent this by the
value -1). For example the CRYPT_CERTINFO_CA attribute
in a certificate controls whether a certificate is marked as
being a CA certificate or not.

Numeric A numeric constant such as an integer value, a bitflag, or a
handle to a cryptlib object. For example the CRYPT_-
CERTINFO_SUBJECTPUBLICKEYINFO attribute specifies
the public key to be added to a certificate, and the
CRYPT_CERTINFO_CRLREASON attribute specifies a
bitflag which indicates why a CRL was issued.

String A text string which contains information such as a name,
message, email address, or URL. For example CRYPT_-
CTXINFO_LABEL contains a human-readable label used to
identify private keys. The most frequently used text string
components are those which make up a certificates
distinguished name, which identifies the certificate owner. All
of these components are limited to a maximum of 64
characters by the X.500 standard which covers certificates and
their components, and cryptlib provides the
CRYPT_MAX_TEXTSIZE constant for use with these
components. Since this limit is specified in characters rather
than bytes, Unicode strings in certificates can be several times
as long as this value when their length is expressed in bytes,
depending on which data type the system uses to represent
Unicode characters. cryptlib also uses the

cryptlib Basics20

Type Description
CRYPT_MAX_TEXTSIZE limit for most other strings such
as key labels.

Since most text strings have a fixed maximum length, you can use code like:

char commonName[CRYPT_MAX_TEXTSIZE + 1];
int commonNameLength;

/* Retrieve the component and null-terminate it */
cryptGetAttributeString(cryptCert, CRYPT_CERTINFO_COMMONNAME,

commonName, &commonNameLength);
commonName[commonNameLength] = '\0';

to read the value, in this case the common name of a certificate owner. This assumes
that the common name is expressed in a single-byte character set. For Unicode
strings, you need to multiply the size of the buffer by the size of a Unicode character
on your system.

Note the addition of the terminating null character, since the text strings returned
aren’t null-terminated.

Object Security
Each cryptlib object has its own security settings which affect the way you can use
the object. You can set these attributes, identified by CRYPT_PROPERTY_name,
after you create an object to provide enhanced control over how it is used. For
example on a system which supports threads you can bind an object to an individual
thread within a process so that only the thread which owns the object can see it. For
any other thread in the process, the object handle is invalid.

You can get and set an objects properties using cryptGetAttribute and
cryptSetAttribute , passing as arguments the object whose property attribute you
want to change, the type of property attribute to change, and the attribute value or a
pointer to a location to receive the attributes’ value. The object property attributes
which you can get or set are:

Property/Description Type

CRYPT_PROPERTY_DECRYPTONLY
CRYPT_PROPERTY_ENCRYPTONLY

Boolean

Whether an encryption action object can be used only to encrypt or decrypt
data. This attribute is useful when you want to restrict the way an
encryption action object can be used, for example before you change the
ownership of an encryption object to allow it to be used by other threads you
could restrict it to be usable only for encryption or decryption purposes.

These attributes are write-once attributes, once you’ve set them they can’t be
reset.

CRYPT_PROPERTY_FORWARDCOUNT Numeric
The number of times an object can be forwarded (that is, the number of
times the ownership of the object can be changed). Each time the objects
ownership is changed, the forwarding count decreases by one; once it
reaches zero, the object can’t be forwarded any further. For example if you
set this attributes’ value to 1 then you can forward the object to another
thread, but that thread can’t forward it further.

After you set this attribute (and any other security-related attributes), you
should set the CRYPT_PROPERTY_LOCKED attribute to ensure that it
can’t be changed later.

CRYPT_PROPERTY_HIGHSECURITY Boolean
This is a composite value which sets all general security-related attributes to
their highest security setting. Setting this value will make an object owned,
non-exportable (if appropriate), non-forwardable, and locked. Since this is a
composite value representing a number of separate attributes, its value can’t

Object Security 21

Property/Description Type
be read or unset after being set.

CRYPT_PROPERTY_LOCKED Boolean
Locks the security-related object attributes so that they can no longer be
changed. You should set this attribute once you’ve set other security-related
attributes such as CRYPT_PROPERTY_FORWARDCOUNT.

This attribute is a write-once attribute, once you’ve set it can’t be reset.

CRYPT_PROPERTY_NONEXPORTABLE Boolean
Whether a key in an encryption action object can be exported from the object
in encrypted form. Normally only session keys can be exported, and only in
encrypted form, however in some cases private keys are also exported in
encrypted form when they can are saved to a keyset. By setting this attribute
you can make them non-exportable in any form (some keys, such as those
held in crypto devices, are nonexportable by default).

This attribute is a write-once attribute, once you’ve set it can’t be reset.

CRYPT_PROPERTY_OWNER Numeric
The identity of the thread which owns the object. The thread’s identity is
specified using a value which depends on the operating system, but is
usually a thread handle or thread ID. For example under Windows 95/98
and NT, the thread ID is the value returned by the
GetCurrentThreadID function, which returns a systemwide unique
handle for the current thread.

You can also pass in a value of CRYPT_UNUSED, which unbinds the
object from the thread and makes it accessible to all threads in the process.

CRYPT_PROPERTY_USAGECOUNT Numeric
The number of times an action object can be used before it deletes itself and
becomes unusable. Every time an action object is used (for example when a
signature encryption object is used to create a signature), its usage count is
decremented; once the usage count reaches zero, the object can’t be used to
perform any further actions (although you can still perform non-action
operations such as reading its attributes).

This attribute is useful when you want to restrict the number of times an
object can be used by other code. For example, before you change the
ownership of a signature object to allow it to be used by another thread, you
would set the usage count to 1 to ensure that it can’t be used to sign arbitrary
numbers of messages or transactions. This eliminates a troubling security
problem with objects such as smart cards where, once a user has
authenticated themselves to the card, the software can ask the card to sign
arbitrary numbers of (unauthorised) transactions alongside the authorised
ones.

This attribute is a write-once attribute, once you’ve set it can’t be reset.

For example to create a triple DES encryption context in one thread and transfer
ownership of the context to another thread you would use:

CRYPT_CONTEXT cryptContext;

/* Create a context and claim it for exclusive use */
cryptCreateContext(&cryptContext, CRYPT_ALGO_3DES);
cryptSetAttribute(cryptContext, CRYPT_PROPERTY_OWNER, threadID);

/* Generate a key into the context */
cryptGenerateKey(cryptContext);

/* Transfer ownership to another thread */
cryptSetAttribute(cryptContext, CRYPT_PROPERTY_OWNER, otherThreadID

);

cryptlib Basics22

The other thread now has exclusive ownership of the context containing the loaded
key. If you wanted to prevent the other thread from transferring the context further,
you would also have to set the CRYPT_PROPERTY_FORWARDCOUNT property
to 1 (to allow you to transfer it) and then set the CRYPT_PROPERTY_LOCKED
attribute (to prevent the other thread from changing the attributes you’ve set).

Note that in the above code the object is claimed as soon as it’s created (and before
any sensitive data is loaded into it) to ensure that another thread isn’t given a chance
to use it when it contains sensitive data. The use of this type of object binding is
recommended when working with sensitive information under Windows 95/98 and
Windows NT, since the Win32 API provides several security holes whereby any
process in the system may interfere with resources owned by any other process in the
system. The checking for object ownership which is performed typically adds a few
microseconds to each call, so in extremely time-critical applications you may want to
avoid binding an object to a thread. On the other hand for valuable resources such as
private keys, you should always consider binding them to a thread, since the small
overhead becomes insignificant compared to the cost of the public-key operation.

Although the example shown above is for encryption contexts, the same applies to
other types of objects such as keysets and envelopes (although in that case the
information they contain isn’t as sensitive as it is for encryption contexts). For
container objects which can themselves contain objects (for example keysets), if the
container is bound to a thread then any objects which are retrieved from it are also
bound to the thread. For example if you’re reading a private key from a keyset, you
should bind the keyset to the current thread after you open it (but before you read any
keys) so that any keys read from it will also automatically be bound to the current
thread. In addition if a key which is used to generate another key (for example the
key which imports a session key) is bound, then the resulting generated key will also
be bound.

On non-multithreaded systems, CRYPT_PROPERTY_OWNER and CRYPT_-
PROPERTY_FORWARDCOUNT have no effect, so you can include them in your
code for any type of system.

Interaction with External Events
Internally, cryptlib consists of a number of security-related objects, some of which
can be controlled by the user through handles to the objects. These objects may also
be acted on by external forces such as information coming from encryption and
system hardware, which will result in a message related to the external action being
sent to any affected cryptlib objects. An example of such an event is the withdrawal
of a smart card from a card reader, which would result in a card removal message
being sent to all cryptlib objects which were created using information stored on the
card. This can affect quite a number of objects.

Typically, the affected cryptlib objects will destroy any sensitive information held in
memory and disable themselves from further use. If you try to use any of the objects,
cryptlib will return CRYPT_ERROR_SIGNALLED to indicate that an external event
has caused a change in the state of the object.

After an object has entered the signalled state, the only remaining operation you can
perform with the object is to destroy it using the appropriate function.

Creating/Destroying Envelopes 23

Enveloping Concepts
Encryption envelopes are the easiest way to use cryptlib. An envelope is a container
object whose behaviour is modified by the data and resources which you push into it.
To use an envelope, you push into it other container and action objects and resources
such as passwords which control the actions performed by the envelope, and then
push in data and pop out data which is processed according to the resources you’ve
pushed in. cryptlib takes care of the rest. For example to encrypt the message “This
is a secret” with the password “Secret password” you would do the following:

create the envelope;
add the password attribute "Secret password" to the envelope;
push data "This is a secret" into the envelope;
pop encrypted data from the envelope;
destroy the envelope;

That’s all that’s necessary. Since you’ve added a password attribute, cryptlib knows
that you want to encrypt the data in the envelope with the password, so it encrypts the
data and returns it to you. This process is referred to as enveloping the data.

The opposite, de-enveloping process consists of:

create the envelope;
push encrypted data into the envelope;
add the password attribute "Secret password" to the envelope;
pop decrypted data from the envelope;
destroy the envelope;

cryptlib knows the type of encrypted data that it’s working with (it can inform you
that you need to push in a password if you don’t know that in advance), decrypts it
with the provided password, and returns the result to you.

This example illustrates a feature of the de-enveloping process which may at first
seem slightly unusual: You have to push in some encrypted data before you can add
the password attribute needed to decrypt it. This is because cryptlib will
automatically determine what to do with the data you give it, so if you added a
password before you pushed in the encrypted data cryptlib wouldn’t know what to do
with the password.

Signing data is almost identical, except that you add a signature key attribute instead
of a password. You can also add a number of other encryption attributes depending
on the type of funtionality you want. Since all of these require further knowledge of
cryptlib’s capabilities, only basic data, compressed-data, and password-based
enveloping will be covered in this section.

Due to constraints in the underlying data formats which cryptlib supports, it is not
currently possible to perform more than one of compression, encryption, or signing
using a single envelope (the resulting data stream can’t be encoded using most of the
common data formats supported by cryptlib). If you want to perform more than one
of these operations, you need to use multiple envelopes, one for each of the
processing steps you want to perform. If you try and add an encryption attribute to an
envelope which is set up for signing, or a signing attribute to an envelope which is set
up for encryption, cryptlib will return a parameter error to indicate that the attribute
type is invalid for this envelope since it is already being used for a different purpose.

Creating/Destroying Envelopes
Envelopes are accessed through envelope objects which work in the same general
manner as the other container objects used by cryptlib. Before you can envelope or
de-envelope data you need to create the appropriate type of envelope for the job. If
you want to envelope some data, you would create the envelope with
cryptCreateEnvelope, specifying the format for the enveloped data (for now you
should use CRYPT_FORMAT_CRYPTLIB, the default format):

CRYPT_ENVELOPE cryptEnvelope;

Enveloping Concepts24

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CRYPTLIB);

/* Perform enveloping */

cryptDestroyEnvelope(cryptEnvelope);

If you want to de-envelope the result of the previous enveloping process, you would
create the envelope with a format CRYPT_FORMAT_AUTO, which tells cryptlib to
automatically detect and use the appropriate format to process the data:

CRYPT_ENVELOPE cryptEnvelope;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);

/* Perform de-enveloping */

cryptDestroyEnvelope(cryptEnvelope);

By default the envelope object which is created will have a 16K data buffer on DOS
and 16-bit Windows systems, and a 32K buffer elsewhere. The size of the internal
buffer affects the amount of extra processing which cryptlib needs to perform; a large
buffer will reduce the amount of copying to and from the buffer, but will consume
more memory (the ideal situation to aim for is one in which the data fits completely
within the buffer, which means that it can be processed in a single operation). Since
the process of encrypting and/or signing the data can increase its overall size, you
should make the buffer 1-2K larger than the total data size if you want to process the
data in one go. The minimum buffer size is 4K, and on 16-bit systems the maximum
buffer size is 32K-1.

If want to use a buffer which is smaller or larger than the default size, you can specify
its size using the CRYPT_ATTRIBUTE_BUFFERSIZE attribute after the envelope
has been created. For example if you knew you were going to be processing a single
80K message on a 32-bit system (you can’t process more than 32K-1 bytes at once on
a 16-bit system) you would use:

CRYPT_ENVELOPE cryptEnvelope;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CRYPTLIB);
cryptSetAttribute(cryptEnvelope, CRYPT_ATTRIBUTE_BUFFERSIZE, 90000L

);
/* Perform enveloping */

cryptDestroyEnvelope(cryptEnvelope);

 (the extra 10K provides a generous safety margin for message expansion due to the
enveloping process). When you specify the size of the buffer, you should try and
make it as large as possible, unless you’re pretty certain you’ll only be seeing
messages up to a certain size. Remember, the larger the buffer, the less processing
overhead is involved in handling data. However, if you make the buffer excessively
large it increases the probability that the data in it will be swapped out to disk, so it’s
a good idea not to go overboard on buffer size. You don’t have to process the entire
message at once, cryptlib provides the ability to envelope or de-envelope data in
multiple sections to allow processing of arbitrary amounts of data even on systems
with only small amounts of memory available.

Note that the CRYPT_ENVELOPE is passed to the envelope creation functions by
reference, as they modify it when they create the envelope. In all other routines in
cryptlib, CRYPT_ENVELOPE is passed by value.

The Data Enveloping Process
Although this section only covers basic data and password-based enveloping, the
concepts it covers apply to all the other types of enveloping as well, so you should
familiarise yourself with this section even if you’re only planning to use the more
advanced types of enveloping such as digitally signd data enveloping. The general
model for enveloping data is:

add any attributes such as passwords or keys
push in data

The Data Enveloping Process 25

pop out processed data

To de-envelope data:

push in data
(cryptlib will inform you what resource(s) it needs to process the

data)
add the required attribute such as a password or key
pop out processed data

The enveloping/de-enveloping functions perform a lot of work in the background.
For example when you add a password attribute to an envelope and follow it with
some data, the function hashes the variable-length password down to create a fixed-
length key for the appropriate encryption algorithm, generates a temporary session
key to use to encrypt the data you’ll be pushing into the envelope, uses the fixed-
length key to encrypt the session key, encrypts the data (taking into account the fact
that most encryption modes can’t encrypt individual bytes but require data to be
present in fixed-length blocks), and then cleans up by erasing any keys and other
sensitive information still in memory. This is why it’s recommended that you use the
envelope interface rather than trying to do the same thing yourself.

The cryptPushData and cryptPopData functions are used to push data into and pop
data out of an envelope. For example to push the message “Hello world” into an
envelope, you would use:

cryptPushData(envelope, "Hello world", 11, &bytesCopied);

The function will return an indication of how many bytes were copied into the
envelope in bytesCopied . Usually this is the same as the number of bytes you
pushed in, but if the envelope is almost full or you’re trying to push in a very large
amount of data, only some of the data may be copied in. This is useful when you
want to process a large quantity of data in multiple sections, which is explained
further on.

Popping data works similarly to pushing data:

cryptPopData(envelope, buffer, bufferSize, &bytesCopied);

In this case you supply a buffer to copy the data to, and an indication of how many
bytes you want to accept, and the function will return the number of bytes actually
copied in bytesCopied . This could be anything from zero up to the full buffer
size, depending on how much data is present in the envelope.

Once you’ve pushed the entire quantity of data which you want to process into an
envelope, you need perform a final push with a length of zero bytes to tell the
envelope object to wrap up the data processing. If you try to push in any more data
after this point, cryptlib will return a CRYPT_ERROR_COMPLETE error to indicate
that processing of the data in the envelope has been completed and no more data can
be added. Since the enveloped data contains all the information necessary to de-
envelope it, it isn’t necessary to perform the final zero-byte push during de-
enveloping.

The cryptSetAttribute and cryptSetAttributeString functions are used to add
attributes to an envelope, with the attribute being identified by a
CRYPT_ENVINFO_type value. For example to add the password attribute
“password” to an envelope, you would use:

cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,
"password", 8);

The various types of attributes which you can add are explained in more detail further
on.

Data Size Considerations
When you add data to an envelope, cryptlib processes and encodes it in a manner
which allows arbitrary amounts of data to be added. If cryptlib knows in advance
how much data will be pushed into the envelope, it can use a more efficient encoding
method since it doesn’t have to take into account an indefinitely long data stream.

Enveloping Concepts26

You can notify cryptlib of the overall data size by setting the CRYPT_ENVINFO_-
DATASIZE attribute:

cryptSetAttribute(envelope, CRYPT_RESOURCE_DATASIZE, dataSize);

This tells cryptlib how much data will be added, and allows it to use the more
efficient encoding format. If you push in more data than this before you wrap up the
enveloping with a zero-byte push, cryptlib will return CRYPT_ERROR_-
OVERFLOW; if you push in less, it will return CRYPT_ERROR_UNDERFLOW.

The amount of data popped out of an envelope never matches the amount pushed in,
because the enveloping process adds encryption headers, digital signature
information, and assorted other paraphernalia which is required to process a message.
In many cases the overhead involved in wrapping up a block of data in an envelope
can be noticeable, so you should always push and pop as much data at once into and
out of an envelope as you can. For example if you have a 100-byte message and push
it in as 10 lots of 10 bytes, this is much slower than pushing a single lot of 100 bytes.
This behaviour is identical to the behaviour in applications like disk or network I/O,
where writing a single big file to disk is a lot more efficient than writing 10 smaller
files, and writing a single big network data packet is more efficient than writing 10
smaller data packets.

Push and popping unnecessarily small blocks of data when the total data size is
unknown can also affect the overall enveloped data size. If you haven’t told cryptlib
how much data you plan to process with CRYPT_ENVINFO_DATASIZE then each
time you pop a block of data from an envelope, cryptlib has to wrap up the current
block and add header information to it to allow it to be de-enveloped later on.
Because this encoding overhead consumes extra space, you should again try to push
and pop a single large data block rather than many small ones (to prevent worst-case
behaviour, cryptlib will coalesce adjacent small blocks into a mimum block size of 10
bytes, so it won’t return an individual block containing less than 10 bytes unless it’s
the last block in the envelope). This is again like disk data storage or network I/O,
where many small files or data packets lead to greater fragmentation and wasted
storage space or network overhead than a single large file or packet.

Basic Data Enveloping
In the simplest case the entire message you want to process will fit into the envelopes
internal buffer. The simplest type of enveloping does nothing to the data at all, but
just wraps it and unwraps it:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

/* Create the envelope */
cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CRYPTLIB);

/* Add the data size information and data followed by a zero-length
block to wrap up the processing, and pop out the processed data */

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DATASIZE,
messageLength);

cryptPushData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, envelopedData, envelopedDataBufferSize,

&bytesCopied);

/* Destroy the envelope */
cryptDestroyEnvelope(cryptEnvelope);

To de-envelope the resulting data you would use:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

/* Create the envelope */
cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);

/* Push in the enveloped data and pop out the recovered message */
cryptPushData(cryptEnvelope, envelopedData, envelopedDataSize,

&bytesCopied);

The Data Enveloping Process 27

cryptPopData(cryptEnvelope, message, messageBufferSize, &bytesCopied
);

/* Destroy the envelope */
cryptDestroyEnvelope(cryptEnvelope);

This type of enveloping isn’t terribly useful, but it does demonstrate how the
enveloping process works.

Compressed Data Enveloping
A variation of basic data enveloping is compressed data enveloping which
compresses or decompresses data during the enveloping process. Compressing data
before signing or encryption improves the overall enveloping throughput
(compressing data and encrypting the compressed data is faster than just encrypting
the larger, uncompressed data), increases security by removing known patterns in the
data, and saves storage space and network bandwidth.

To tell cryptlib to compress data which you add to an envelope, you should set the
CRYPT_ENVINFO_COMPRESSION attribute before you add the data. This
attribute doesn’t take a value, so you should set it to CRYPT_UNUSED. The code to
compress a message is then:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CRYPTLIB);

/* Tell cryptlib to compress the data */
cryptSetAttribute (cryptEnvelope, CRYPT_ENVINFO_COMPRESSION,

CRYPT_UNUSED);

/* Add the data size information and data, push a zero-byte data block
to wrap up the enveloping, and pop out the processed data */

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DATASIZE,
messageLength);

cryptPushData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, envelopedData, envelopedDataBufferSize,

&bytesCopied);

cryptDestroyEnvelope(cryptEnvelope);

Deenveloping compressed data works exactly like decompressing normal data,
cryptlib will transparently decompress the data for you and return the decompressed
result when you call cryptPopData.

The compression/decompression process can cause a large change in data size
between what you push and what you pop back out, so you typically end up pushing
much more than you pop or popping much more than you push. In particular, you
may end up pushing multiple lots of data before you can pop any compressed data
out, or pushing a single lot of compressed data and having to pop multiple lots of
uncompressed data. This applies particularly to the final stages of enveloping when
you push a zero-byte block to flush out any remaining data, which signals the
compressor to wrap up processing and move any remaining data into the envelope.
This means that the flush can return CRYPT_ERROR_OVERFLOW to indicate that
there is more data to be flushed, requiring multiple iterations of flushing and copying
out data:

/* ... */

/* Flush out any remaining data */
do

{
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, outBuffer, BUFFER_SIZE, &bytesCopied

);
}

while(bytesCopied);

Enveloping Concepts28

To handle this in a more general manner, you should use the processing techniques
described in “Enveloping Large Data Quantities” on page 28.

Password-based Encryption Enveloping
To do something useful (security-wise) to the data, you need to add a container or
action object or other type of attribute to tell the envelope to secure the data in some
way. For example if you wanted to encrypt a message with a password you would
use:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CRYPTLIB);

/* Add the password */
cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,

password, passwordLength);

/* Add the data size information and data, push a zero-byte data block
to wrap up the enveloping, and pop out the processed data */

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DATASIZE,
messageLength);

cryptPushData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, envelopedData, envelopedDataBufferSize,

&bytesCopied);

cryptDestroyEnvelope(cryptEnvelope);

To de-envelope the resulting data you would use:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);

/* Push in the enveloped data and the password required to deenvelope
it, and pop out the recovered message */

cryptPushData(cryptEnvelope, envelopedData, envelopedDataLength,
&bytesCopied);

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_PASSWORD, password,
passwordLength);

cryptPopData(cryptEnvelope, message, messageBufferSize, &bytesCopied
);

cryptDestroyEnvelope(cryptEnvelope);

If you add the wrong password, cryptlib will return a CRYPT_ERROR_-
WRONGKEY error. You can use this to request a new password from the user and
try again. For example to give the user the traditional three attempts at getting the
password right you would replace the code to add the password with:

for(i = 0; i < 3; i++)
{
password = ...;
if(cryptSetAttributeString(envelope, CRYPT_RESOURCE_PASSWORD,

password, passwordLength) == CRYPT_OK)
break;

}

De-enveloping Mixed Data
Sometimes you won’t know exactly what type of processing has been applied to the
data you’re trying to de-envelope, so you can let cryptlib tell you what to do. When
cryptlib needs some sort of resource (such as a password or an encryption key) to
process the data which you’ve pushed into an envelope, it will return a CRYPT_-
ENVELOPE_RESOURCE error if you try and push in any more data or pop out the
processed data. This error code is returned as soon as cryptlib knows enough about
the data you’re pushing into the envelope to be able to process it properly. Typically,
as soon as you start pushing in encrypted, signed, or otherwise processed data,

Enveloping Large Data Quantities 29

cryptPushData will return CRYPT_ENVELOPE_RESOURCE to tell you that it
needs some sort of resource in order to continue.

If you knew that the data you were processing was either plain, unencrypted or
compressed data or password-encrypted data created using the code shown earlier,
you could de-envelope it with:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied, status

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);

/* Push in the enveloped data and pop out the recovered message */
status = cryptPushData(cryptEnvelope, envelopedData,

envelopedDataLength, &bytesCopied);
if(status == CRYPT_ENVELOPE_RESOURCE)

cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,
password, passwordLength);

cryptPopData(cryptEnvelope, message, messageBufferSize, &bytesCopied
);

cryptDestroyEnvelope(cryptEnvelope);

If the data is enveloped without any processing or is compressed data, cryptlib will
de-envelope it without requiring any extra input. If the data is enveloped using
password-based encryption, cryptlib will return CRYPT_ENVELOPE_RESOURCE
to indicate that it needs a password before it can continue.

This illustrates the manner in which the enveloped data contains enough information
to allow cryptlib to process it automatically. If the data had been enveloped using
some other form of processing (for example public-key encryption or digital
signatures), cryptlib would ask you for the private decryption key or the signature
check key at this time (it’s actually slightly more complex than this, the details are
explained in “Advanced Enveloping” on page 32).

Enveloping Large Data Quantities
Sometimes, a message may be too big to process in one go or may not be available in
its entirety, an example being data which is being sent or received over a network
interface where only the currently transmitted or received portion is available.
Although it’s much easier to process a message in one go, it’s also possible to
envelope and de-envelope it a piece at a time (bearing in mind the earlier comment
that the enveloping is most efficient when you push and pop data a single large block
at a time rather than in many small blocks). With unknown amounts of data to be
processed it generally isn’t possible to use CRYPT_ENVINFO_DATASIZE, so in
the sample code below this is omitted.

There are several strategies for processing data in multiple parts. The simplest one
simply pushes and pops a fixed amount of data each time:

loop
push data
pop data

Since there’s a little overhead added by the enveloping process, you should always
push in slightly less data than the envelope buffer size. Alternatively, you can use the
CRYPT_ATTRIBUTE_BUFFERSIZE to specify an envelope buffer which is slightly
larger than the data block size you want to use. The following code uses the first
technique to password-encrypt a file in blocks of BUFFER_SIZE - 4K bytes:

CRYPT_ENVELOPE cryptEnvelope;
void *buffer;
int bufferCount;

/* Create the envelope with a buffer of size BUFFER_SIZE and add the
password attribute */

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CRYPTLIB);
cryptSetAttribute(cryptEnvelope, CRYPT_ATTRIBUTE_BUFFERSIZE,

BUFFER_SIZE);

Enveloping Concepts30

cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,
password, passwordLength);

/* Allocate a buffer for file I/O */
buffer = malloc(BUFFER_SIZE);

/* Process the entire file */
while(!endOfFile(inputFile))

{
int bytesCopied;

/* Read a BUFFER_SIZE - 4K block from the input file, envelope it,
and write the result to the output file */

bufferCount = readFile(inputFile, buffer, BUFFER_SIZE - 4096);
cryptPushData(cryptEnvelope, buffer, bufferCount, &bytesCopied);
cryptPopData(cryptEnvelope, buffer, BUFFER_SIZE, &bytesCopied);
writeFile(outputFile, buffer, bytesCopied);
}

/* Flush the last lot of data out of the envelope */
cryptPushData(cryptEnvelope, NULL, 0);
cryptPopData(cryptEnvelope, buffer, BUFFER_SIZE, &bytesCopied);
if(bytesCopied)

writeFile(outputFile, buffer, bytesCopied);
free(buffer);

cryptDestroyEnvelope(cryptEnvelope);

The code allocates a BUFFER_SIZE byte I/O buffer, reads up to BUFFER_SIZE -
4K from the input file, and pushes it into the envelope. It then tells cryptlib to pop up
to BUFFER_SIZE bytes of enveloped data back out into the buffer, takes whatever is
popped out, and writes it to the output file. When it has processed the entire file, it
pushes in the usual zero-length data block to flush any remaining data out of the
buffer.

Note that the upper limit on BUFFER_SIZE depends on the system you’re running
the code on. If you need to run it on a 16-bit system, BUFFER_SIZE is limited to
32K–1 bytes because of the length limit imposed by 16-bit integers, and the default
envelope buffer size is 16K bytes unless you specify a larger default size using the
CRYPT_ATTRIBUTE_BUFFERSIZE attribute.

Going to a lot of effort to exactly match a certain data size such as a power of two
when pushing and popping data isn’t really worthwhile, since the overhead added by
the envelope encoding will always change the final encoded data length.

When you’re performing compressed data enveloping or de-enveloping, the
processing usually results in a large change in data size, in which case you may need
to use the technique described below which can handle arbitrarily-sized input and
output quantities.

Alternative Processing Techniques
A slightly more complex technique is to always stuff the envelope as full as possible
before trying to pop anything out of it:

loop
do

push data
while push status != CRYPT_ERROR_OVERFLOW
pop data

This results in the most efficient use of the envelopes internal buffer, but is probably
overkill for the amount of code complexity required:

CRYPT_ENVELOPE cryptEnvelope;
void *inBuffer, *outBuffer;
int bytesCopiedIn, bytesCopiedOut, bufferCount;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CRYPTLIB);
cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,

password, passwordLength);

Enveloping Large Data Quantities 31

/* Allocate input and output buffers */
inBuffer = malloc(BUFFER_SIZE);
outBuffer = malloc(BUFFER_SIZE);

/* Process the entire file */
while(!endOfFile(inputFile))

{
int offset = 0;

/* Read a buffer full of data from the file and push and pop it
to/from the envelope */

bufferCount = readFile(inputFile, inBuffer, BUFFER_SIZE);
while(bufferCount)

{
/* Push as much as we can into the envelope */
cryptPushData(cryptEnvelope, inBuffer + offset, bufferCount,

&bytesCopiedIn);
offset += bytesCopiedIn;
bufferCount -= bytesCopiedIn;

/* If we couldn't push everything in, the envelope is full, so
we empty a buffers worth out */

if(bufferCount)
{
cryptPopData(cryptEnvelope, outBuffer, BUFFER_SIZE,

&bytesCopiedOut);
writeFile(outputFile, outBuffer, bytesCopiedOut);
}

}
}

/* Flush out any remaining data */
do

{
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, outBuffer, BUFFER_SIZE,

&bytesCopiedOut);
if(bytesCopiedOut)

writeFile(outputFile, outBuffer bytesCopiedOut);
}

while(bytesCopiedOut);
free(inBuffer);
free(outBuffer);

cryptDestroyEnvelope(cryptEnvelope);

Running the code to fill/empty the envelope in a loop is useful when a transformation
such as data compression, which dramatically changes the length of the
enveloped/de-enveloped data, is being applied. In this case it’s not possible to tell
how much data can still be pushed into or popped out of the envelope because the
length is transformed by the compression operation. It’s also generally good practice
to not write code which makes assumptions about the amount of internal buffer space
available in the envelope, the above code will make optimal use of the envelope
buffer no matter what its size.

Enveloping with Many Enveloping Attributes
There may be a special-case condition when you begin the enveloping which occurs
if you have added a large number of password, encryption, or keying attributes to the
envelope so that the header prepended to the enveloped data is particularly large. For
example if you encrypt a message with different keys or passwords for several dozen
recipients, the header information for all the keys could become large enough that it
occupies a noticeable portion of the envelopes buffer. In this case you can push in a
small amount of data to flush out the header information, and then push and pop data
as usual:

add many password/encryption/keying attributes;
push a small amount of data;
pop data;
loop

push data;
pop data;

Enveloping Concepts32

If you use this strategy then you can trim the difference between the envelope buffer
size and the amount of data you push in at once down to about 1K; the 4K difference
shown earlier took into account the fact that a little extra data would be generated the
first time data was pushed due to the overhead of adding the envelope header:

CRYPT_ENVELOPE cryptEnvelope;
void *buffer;
int bufferCount;

/* Create the envelope and add many passwords */
cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CRYPTLIB);
cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,

password1, password1Length);
/* ... */

cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,
password100, password100Length);

buffer = malloc(BUFFER_SIZE);

/* Read up to 100 bytes from the input file, push it into the envelope
to flush out the header data, and write all the data in the
envelope to the output file */

bufferCount = readFile(inputFile, buffer, 100);
cryptPushData(cryptEnvelope, buffer, bufferCount, &bytesCopied);
cryptPopData(cryptEnvelope, buffer, BUFFER_SIZE, &bytesCopied);
writeFile(outputFile, buffer, bytesCopied);

/* Process the entire file */
while(!endOfFile(inputFile))

{
int bytesCopied;

/* Read a BUFFER_SIZE block from the input file, envelope it, and
write the result to the output file */

bufferCount = readFile(inputFile, buffer, BUFFER_SIZE);
cryptPushData(cryptEnvelope, buffer, bufferCount, &bytesCopied);
cryptPopData(cryptEnvelope, buffer, BUFFER_SIZE, &bytesCopied);
writeFile(outputFile, buffer, bytesCopied);
}

/* Flush the last lot of data out of the envelope */
cryptPushData(cryptEnvelope, NULL, 0);
cryptPopData(cryptEnvelope, buffer, BUFFER_SIZE, &bytesCopied);
if(bytesCopied)

writeFile(outputFile, buffer, bytesCopied);
free(buffer);

cryptDestroyEnvelope(cryptEnvelope);

In the most extreme case (hundreds or thousands of resources added to an envelope),
the header could fill the entire envelope buffer, and you would need to pop the initial
data in multiple sections before you could process any more data using the usual
push/pop loop. If you plan to use this many resources, it’s better to specify the use of
a larger envelope buffer using CRYPT_ATTRIBUTE_BUFFERSIZE in order to
eliminate the need for such special-case processing for the header.

Deenveloping data which has been enveloped with multiple keying resources also has
special requirements and is covered in the next section.

Public-Key Encrypted Enveloping 33

Advanced Enveloping
The previous chapter covered basic enveloping concepts and simple password-based
enveloping. Extending beyond these basic forms of enveloping, you can also
envelope data using public-key encryption or digitally sign the contents of the
envelope. These types of enveloping require the use of public and private keys which
are explained in various other chapters which cover key generation, key databases,
and certificates.

cryptlib automatically manages objects such as public and private keys and keysets,
so you can destroy them as soon as you’ve pushed them into the envelope. Although
the object will appear to have been destroyed, the envelope maintains its own
reference to it which it can continue to use for encryption or signing. This means that
instead of the obvious:

create the key object;
create the envelope;
add the key object to the envelope;
push data into the envelope;
pop encrypted data from the envelope;
destroy the envelope;
destroy the key object;

it’s also quite safe to use something like:

create the envelope;
create the key object;
add the key object to the envelope;
destroy the key object;
push data into the envelope;
pop encrypted data from the envelope;
destroy the envelope;

Keeping an object active for the shortest possible time makes it much easier to track,
it’s a lot easier to let cryptlib manage these things for you by handing them off to the
envelope.

Public-Key Encrypted Enveloping
Public-key based enveloping works just like password-based enveloping except that
instead of adding a password attribute you add a public key or certificate (when
encrypting) or a private decryption key (when decrypting). For example if you
wanted to encrypt data using a public key contained in pubKeyContext , you
would use:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CRYPTLIB);

/* Add the public key */
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_PUBLICKEY,

pubKeyContext);

/* Add the data size information and data, push a zero-byte data block
to wrap up the enveloping, and pop out the processed data */

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DATASIZE,
messageLength);

cryptPushData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, envelopedData, envelopedDataBufferSize,

&bytesCopied);

cryptDestroyEnvelope(cryptEnvelope);

You can also use a certificate in place of the public key, the envelope will handle both
in the same way. The certificate is typically obtained by reading it from a keyset,
either directly using cryptGetPublicKey as described in “Reading a Key from a
Keyset” on page 52, or by setting the CRYPT_ENVINFO_RECIPIENT attribute as

Advanced Enveloping34

described in “S/MIME Enveloping” on page 134. Using the CRYPT_ENVINFO_-
RECIPIENT attribute is the preferred option since it lets cryptlib handle a number of
the complications which arise from reading keys for you.

De-enveloping is slightly more complex since, unlike password-based enveloping,
there are different keys used for enveloping and de-enveloping. In the simplest case
if you know in advance which private decryption key is required to decrypt the data,
you can add it to the envelope in the same way as with password-based enveloping:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);

/* Push in the enveloped data and the private decryption key required
to deenvelope it, and pop out the recovered message */

cryptPushData(cryptEnvelope, envelopedData, envelopedDataLength,
&bytesCopied);

cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_PRIVATEKEY,

privKeyContext);
cryptPopData(cryptEnvelope, message, messageBufferSize, &bytesCopied

);

cryptDestroyEnvelope(cryptEnvelope);

Although this leads to very simple code, it’s somewhat awkward since you may not
know in advance which private key is required to decrypt a message. To make the
private key handling process easier, cryptlib provides the ability to automatically
fetch decryption keys from a private key keyset for you, so that instead of adding a
private key, you add a private key keyset object and cryptlib takes care of obtaining
the key for you. Alternatively, you can use a crypto device such as a smart card or
Fortezza card to perform the decryption.

Using a private key from a keyset is slightly more complex than pushing in the
private key directly since the private key stored in the keyset is usually encrypted or
PIN-protected and will require a password or PIN supplied by the user to access it.
This means that you have to supply a password to the envelope before the private key
can be used to decrypt the data in it. This works as follows:

create the envelope;
add the decryption keyset;
push encrypted data into the envelope;
if(required resource = private key)

add password to decrypt the private key;
pop decrypted data from the envelope;
destroy the envelope;

When you add the password, cryptlib will use it to try to recover the private key
stored in the keyset you added previously. If the password is incorrect, cryptlib will
return CRYPT_ERROR_WRONGKEY, otherwise it will recover the private key and
then use that to decrypt the data. The full code to decrypt public-key enveloped data
is therefore:

CRYPT_ENVELOPE cryptEnvelope;
CRYPT_ATTRIBUTE_TYPE requiredAttribute;
int bytesCopied, status;

/* Create the envelope and add the private key keyset and data */
cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_KEYSET_DECRYPT,

privKeyKeyset);
cryptPushData(cryptEnvelope, envelopedData, envelopedDataLength,

&bytesCopied);

/* Find out what we need to continue and, if it's a private key, add
the password to recover it from the keyset */

cryptGetAttribute(cryptEnvelope, CRYPT_ENVINFO_CURRENT_COMPONENT, &
requiredAttribute);

if(requiredAttribute != CRYPT_ENVINFO_PRIVATEKEY)
/* Error */

Public-Key Encrypted Enveloping 35

cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,
password, passwordLength);

cryptPushData(cryptEnvelope, NULL, 0, NULL);

/* Pop the data and clean up */
cryptPopData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptDestroyEnvelope(cryptEnvelope);

In the unusual case where the private key isn’t protected by a password or PIN,
there’s no need to add the password since cryptlib will use the private key as soon as
you access the attribute information by reading it using cryptGetAttribute .

In order to ask the user for a password, it can be useful to know the name or label
attached to the private key so you can display it as part of the password request
message. You can obtain the label for the required private key by reading the
envelope’s CRYPT_ENVINFO_PRIVATEKEY_LABEL attribute:

char label[CRYPT_MAX_TEXTSIZE + 1];
int labelLength;

cryptGetAttributeString(cryptEnvelope,
CRYPT_ENVINFO_PRIVATEKEY_LABEL, label, &labelLength);

label[labelLength] = '\0';

You can then use the key label when you ask the user for the password for the key.

Using a crypto device to perform the decryption is somewhat simpler since the PIN
will already have been entered after cryptDeviceOpen was called, so there’s no need
to supply it as CRYPT_ENVINFO_PASSWORD. To use a crypto device, you add
the device in place of the private key keyset:

CRYPT_ENVELOPE cryptEnvelope;
CRYPT_ATTRIBUTE_TYPE requiredAttribute;
int bytesCopied, status;

/* Create the envelope and add the crypto device and data */
cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_KEYSET_DECRYPT,

cryptDevice);
cryptPushData(cryptEnvelope, envelopedData, envelopedDataLength,

&bytesCopied);

/* Find out what we need to continue. Since we've told the envelope
to use a crypto device, it'll perform the decryption as soon as we
ask it to using the device, so we shouldn't have to supply anything
else */

cryptGetAttribute(cryptEnvelope, CRYPT_ENVINFO_CURRENT_COMPONENT, &
requiredAttribute);

if(requiredAttribute != CRYPT_ATTRIBUTE_NONE)
/* Error */

cryptPushData(cryptEnvelope, NULL, 0, NULL);

/* Pop the data and clean up */
cryptPopData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptDestroyEnvelope(cryptEnvelope);

Note how cryptGetAttribute now reports that there’s nothing further required (since
the envelope has used the private key in the crypto device to performed the
decryption), and you can continue with the de-enveloping process.

Code which can handle the use of either a private key keyset or a crypto device for
the decryption is a straightforward extension of the above:

CRYPT_ENVELOPE cryptEnvelope;
CRYPT_ATTRIBUTE_TYPE requiredAttribute;
int bytesCopied, status;

/* Create the envelope and add the keyset or crypto device and data */
cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_KEYSET_DECRYPT,

cryptKeysetOrDevice);
cryptPushData(cryptEnvelope, envelopedData, envelopedDataLength,

&bytesCopied);

Advanced Enveloping36

/* Find out what we need to continue. If what we added was a crypto
device, the decryption will occur once we query the envelope. If
what we added was a keyset, we need to supply a password for the
decryption to happen */

cryptGetAttribute(cryptEnvelope, CRYPT_ENVINFO_CURRENT_COMPONENT, &
requiredAttribute);

if(requiredAttribute != CRYPT_ATTRIBUTE_NONE)
{
char label[CRYPT_MAX_TEXTSIZE + 1];
int labelLength;

if(requiredAttribute != CRYPT_ENVINFO_PASSWORD)
/* Error */

/* Get the label for the private key and obtain the required
password from the user */

cryptGetAttributeString(cryptEnvelope,
CRYPT_ENVINFO_PRIVATEKEY_LABEL, label, &labelLength);

label[labelLength] = '\0';
getPassword(label, password, &passwordLength);

/* Add the password required to decrypt the private key */
cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,

password, passwordLength);
}

cryptPushData(cryptEnvelope, NULL, 0, NULL);

/* Pop the data and clean up */
cryptPopData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptDestroyEnvelope(cryptEnvelope);

Digitally Signed Enveloping
Digitally signed enveloping works much like the other enveloping types except that
instead of adding an encryption or decryption attribute you supply a private signature
key (when enveloping) or a public key or certificate (when de-enveloping). For
example if you wanted to sign data using a private signature key contained in
sigKeyContext , you would use:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CRYPTLIB);

/* Add the signing key */
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_SIGNATURE,

sigKeyContext);

/* Add the data size information and data, push a zero-byte data block
to wrap up the enveloping, and pop out the processed data */

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DATASIZE,
messageLength);

cryptPushData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, envelopedData, envelopedDataBufferSize,

&bytesCopied);

cryptDestroyEnvelope(cryptEnvelope);

The signature key could be a native cryptlib key, but it could also be a key from a
crypto device such as a smart card or Fortezza card. They both work in the same way
for signing data.

As with public-key based enveloping, verifying the signed data requires a different
key for this part of the operation, in this case a public key or key certificate. In the
simplest case if you know in advance which public key is required to verify the
signature, you can add it to the envelope in the same way as with the other envelope
types:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);

Enveloping with Multiple Attributes 37

/* Add the enveloped data and the signature check key required to
verify the signature, and pop out the recovered message */

cryptPushData(cryptEnvelope, envelopedData, envelopedDataLength,
&bytesCopied);

cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_SIGNATURE,

sigCheckKeyContext);
cryptPopData(cryptEnvelope, message, messageBufferSize, &bytesCopied

);

cryptDestroyEnvelope(cryptEnvelope);

Although this leads to very simple code, it’s somewhat awkward since you may not
know in advance which public key or key certificate is required to verify the
signature on the message. To make the signature verification process easier, cryptlib
provides the ability to automatically fetch signature verification keys from a public-
key keyset for you, so that instead of supplying a public key or key certificate, you
add a public-key keyset object before you start de-enveloping and cryptlib will take
care of obtaining the key for you. This option works as follows:

create the envelope;
add the signature check keyset;
push signed data into the envelope;
pop plain data from the envelope;
if(required resource = signature check key)

read signature verification result;

The full code to verify signed data is therefore:

CRYPT_ENVELOPE cryptEnvelope;
CRYPT_ENVINFO_TYPE requiredResource;
int bytesCopied, signatureResult, status;

/* Create the envelope and add the signature check keyset */
cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_KEYSET_SIGCHECK,

sigCheckKeyset);

/* Push in the signed data and pop out the recovered message */
cryptPushData(cryptEnvelope, envelopedData, envelopedDataLength,

&bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, message, messageBufferSize, &bytesCopied

);

/* Determine the result of the signature check */
cryptGetAttribute(cryptEnvelope, CRYPT_ENVINFO_SIGNATURE_RESULT,

&signatureResult);

The signature result will typically be CRYPT_OK (the signature verified),
CRYPT_ERROR_SIGNATURE (the signature did not verify), or
CRYPT_ERROR_NOTFOUND (the key needed to check the signature wasn’t found
in the keyset).

Enveloping with Multiple Attributes
Sometimes enveloped data can have multiple sets of attributes applied to it, for
example encrypted data might be encrypted with two different passwords to allow it
to be decrypted by two different people:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CRYPTLIB);

/* Add two different passwords to the envelope */
cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,

password1, password1Length);
cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,

password2, password2Length);

Advanced Enveloping38

/* Add the data size information and data, push a zero-byte data block
to wrap up the enveloping, and pop out the processed data */

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DATASIZE,
messageLength);

cryptPushData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, envelopedData, envelopedDataBufferSize,

&bytesCopied);

cryptDestroyEnvelope(cryptEnvelope);

In this case either of the two passwords can be used to decrypt the data. This can be
extended indefinitely, so that 5, 10, 50, or 100 passwords could be used (of course
with 100 different passwords able to decrypt the data, it’s questionable whether it’s
worth the effort of encrypting it at all, however this sort of multiuser encryption could
be useful for public-key encrypting messages sent to collections of people such as
mailing lists). The same applies for public-key enveloping, in fact the various
encryption types can be mixed if required so that (for example) a private decryption
key or a password could be used to decrypt data.

When deenveloping data which has been enveloped with a choice of multiple
attributes, cryptlib builds a list of the attributes required to decrypt the data and
allows you to query the required attribute information and choose the one you want to
work with.

Envelope Attribute Cursor Management
The attributes required for deenveloping are managed through the use of an envelope
attribute cursor which cryptlib maintains for each envelope object. You can set or
move the cursor either to an absolute position or relative to the current position.

You move the cursor by setting an envelope attribute which tells cryptlib where to
move the envelope attribute cursor. This attribute, identified by CRYPT_-
ENVINFO_CURRENT_COMPONENT takes as value a cursor movement code
which moves the cursor either to an absolute position (the first or last required
attribute) or relative to its current position. The movement codes are:

Code Description

CRYPT_CURSOR_FIRST Move the cursor to the first attribute.

CRYPT_CURSOR_LAST Move the cursor to the last attribute.

CRYPT_CURSOR_NEXT Move the cursor to the next attribute.

CRYPT_CURSOR_PREV Move the cursor to the previous attribute.

For example to move the cursor to the first required attribute you would use:

cryptSetAttribute(envelope, CRYPT_ENVINFO_CURRENT_COMPONENT,
CRYPT_CURSOR_FIRST);

To advance the cursor to the next required attribute you would use:

cryptSetAttribute(envelope, CRYPT_ENVINFO_CURRENT_COMPONENT,
CRYPT_CURSOR_NEXT);

To obtain the type of required attribute at the current cursor position you would use:

CRYPT_ATTRIBUTE_TYPE requiredAttribute;

cryptSetAttribute(envelope, CRYPT_ENVINFO_CURRENT_COMPONENT,
&requiredAttribute);

The attribute cursor provides a convenient mechanism for stepping through every
required attribute which is present in an envelope to obtain information about it. To
iterate through each required decryption attribute when de-enveloping encrypted data
you would use:

if(cryptSetAttribute(envelope, CRYPT_ENVINFO_CURRENT_COMPONENT,
CRYPT_CURSOR_FIRST) == CRYPT_OK)
do

{

Enveloping with Multiple Attributes 39

CRYPT_ATTRIBUTE_TYPE requiredAttribute;

/* Get the type of the required attribute at the cursor position
*/

cryptGetAttribute(envelope, CRYPT_ENVINFO_CURRENT_COMPONENT,
&requiredAttribute);

/* Handle the attribute if possible */
/* ... */
}

while(cryptSetAttribute(envelope,
CRYPT_ENVINFO_CURRENT_COMPONENT, CRYPT_CURSOR_NEXT) == CRYPT_OK
);

As soon as one of the attributes required to continue is added to the envelope, cryptlib
will delete the required-attribute list and continue, so the attempt to move the cursor
to the next entry in the list will fail and the program will drop out of the loop.

Iterating through each required signature attribute when de-enveloping signed data is
similar, but instead of trying to provide the necessary decryption information you
would provide the necessary signature check information (if requested) and display
the resulting signature information. Unlike encryption deenveloping attributes,
cryptlib won’t delete the signature information once it has been processed, so you can
re-read the information multiple times.

Processing Multiple Deenveloping Attributes
The previous section explained how to step through the list of required attributes to
find one which can be processed to allow the enveloped data to be decrypted. All
that’s left to do is to plug in the appropriate handler routines to manage each attribute
requirement which could be encountered. For example to try a password against all
of the possible passwords which might decrypt the message which was enveloped
above, you would use:

int status

/* Get the decryption password from the user */
password = ...;

if(cryptSetAttribute(envelope, CRYPT_ENVINFO_CURRENT_COMPONENT,
CRYPT_CURSOR_FIRST) == CRYPT_OK)
do

{
CRYPT_ATTRIBUTE_TYPE requiredAttribute;

/* Get the type of the required attribute at the cursor position
*/

cryptGetAttribute(envelope, CRYPT_ENVINFO_CURRENT_COMPONENT,
&requiredAttribute);

/* Make sure we really do require a password resource */
if(requiredAttribute != CRYPT_ENVINFO_PASSWORD)

/* Error */

/* Try the password. If everything is OK, we'll drop out of the
loop */

status = cryptSetAttributeString(envelope,
CRYPT_ENVINFO_PASSWORD, password, passwordLength);

}
while(status == CRYPT_WRONGKEY && \

cryptSetAttribute(envelope,
CRYPT_ENVINFO_CURRENT_COMPONENT, CRYPT_CURSOR_NEXT) ==
CRYPT_OK);

This steps through each required attribute in turn and tries the supplied password to
see if it matches. As soon as the password matches, the data can be decrypted, and
we drop out of the loop and continue the de-enveloping process.

To extend this a bit further, let’s assume that the data could be enveloped using a
password or a public key (requiring a private decryption key to decrypt it, either one
from a keyset or a crypto device such as a smart card or Fortezza card). The code
inside the loop above then becomes:

Advanced Enveloping40

CRYPT_ATTRIBUTE_TYPE requiredAttribute;

/* Get the type of the required resource at the cursor position */
cryptGetAttribute(envelope, CRYPT_ENVINFO_CURRENT_COMPONENT,

&requiredAttribute);

/* If the decryption is being handled via a crypto device, we don't
need to take any further action, the data has already been
decrypted */

if(requiredAttribute != CRYPT_ATTRIBUTE_NONE)
{
/* Make sure we really do require a password attribute */
if(requiredAttribute != CRYPT_ENVINFO_PASSWORD && \

 requiredAttribute != CRYPT_ENVINFO_PRIVATEKEY)
/* Error */

/* Try the password. If everything is OK, we'll drop out of the
loop */

status = cryptSetAttributeString(envelope, CRYPT_ENVINFO_PASSWORD,
password, passwordLength);

}

If what’s required is a CRYPT_ENVINFO_PASSWORD, cryptlib will apply it
directly to decrypt the data. If what’s required is a CRYPT_ENVINFO_-
PRIVATEKEY, cryptlib will either use the crypto device to decrypt the data if it’s
available, or otherwise use the password to try to recover the private key from the
keyset and then use that to decrypt the data.

Nested Envelopes
Sometimes it may be necessary to apply multiple levels of processing to data, for
example you may want to both sign and encrypt data. cryptlib allows enveloped data
to be arbitrarily nested, with each nested content type being either further enveloped
data or (finally) the raw data payload. For example to sign and encrypt data you
would do the following:

create the envelope;
add the signature key;
push in the raw data;
pop out the signed data;
destroy the envelope;

create the envelope;
add the encryption key;
push in the previously signed data;
pop out the signed, encrypted data;
destroy the envelope;

This nesting process can be extended arbitrarily with any of the cryptlib content
types.

Since cryptlib’s enveloping isn’t sensitive to the content type (that is, you can push in
any type of data and it’ll be enveloped in the same way), you need to notify cryptlib
of the actual content type being enveloped if you’re using nested envelopes. You can
set the content type being enveloped using the
CRYPT_ENVINFO_CONTENTTYPE attribute, giving as value the appropriate
CRYPT_CERTINFO_CONTENT_type. For example to specify that the data being
enveloped is signed data, you would use:

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_CONTENTTYPE,
CRYPT_CERTINFO_CONTENT_SIGNEDDATA);

The default content type is plain data, so if you don’t explicitly set a content type
cryptlib will assume it’s just raw data.

Using the nested enveloping example shown above, the full enveloping procedure
would be:

create the envelope;
add the signature key;
(cryptlib sets the content type to the default ' plain data ')
push in the raw data;

Nested Envelopes 41

pop out the signed data;
destroy the envelope;

create the envelope;
set the content type to 'signed data';
add the encryption key;
push in the previously signed data;
pop out the signed, encrypted data;
destroy the envelope;

This will mark the innermost content as plain data (the default), the next level as
signed data, and the outermost level as encrypted data.

Unwrapping nested enveloped data is the opposite of the enveloping process. For
each level of enveloped data, you can obtain its type (once you’ve pushed enough of
it into the envelope to allow cryptlib to decode it) by reading the
CRYPT_ENVINFO_CONTENTTYPE attribute:

CRYPT_ATTRIBUTE_TYPE contentType;

cryptGetAttribute(cryptEnvelope, CRYPT_ENVINFO_CONTENTTYPE,
&contentType);

Processing nested enveloped data therefore involves unwrapping successive layers of
data until you finally reach the raw data content type.

Key Databases42

Key Databases
The most direct way to load a public or private key into an encryption object is by
setting the CRYPT_CTXINFO_KEY attribute as described in “Loading Keys into
Encryption Contexts” on page 60. However this method is rather clumsy, requires
detailed knowledge of the key format and parameters, and isn’t available in some
environments like Delphi and Visual Basic. A much easier way to work with public
and private keys is to store them in a keyset, an abstract container which can hold one
or more keys. In practice a keyset might be a cryptlib key file, a PGP keyring, a
relational database, an LDAP directory (using a standard or SSL-protected link), a
URL accessed via HTTP, or a smart card containing a key. cryptlib accesses all of
these keyset types using a uniform interface which hides all of the background details
of the underlying keyset implementations.

Creating/Destroying Keyset Objects
Keysets are accessed as keyset objects which work in the same general manner as the
other container objects used by cryptlib. You create a keyset object with
cryptKeysetOpen, specifying the type of keyset you want to attach it to, the location
of the keyset, and any special options you want to apply for the keyset. This opens a
connection to the keyset. Once you’ve finished with the keyset, you use
cryptKeysetClose to sever the connection and destroy the keyset object:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpen(&cryptKeyset, keysetType, keysetLocation,
keysetOptions);

/* Load/store keys */

cryptKeysetClose(cryptKeyset);

The available keyset types are:

Keyset Type Description

CRYPT_KEYSET_FILE A flat-file keyset, either a cryptlib
key file or a PGP keyring.

CRYPT_KEYSET_HTTP URL specifying the location of a
certificate or CRL.

CRYPT_KEYSET_LDAP LDAP directory using a standard
or SSL-protected link.

CRYPT_KEYSET_SMARTCARD Smart card key carrier.

CRYPT_KEYSET_MSQL MSQL RDBMS.
CRYPT_KEYSET_MYSQL MySQL RDBMS.
CRYPT_KEYSET_ODBC Generic ODBC interface.
CRYPT_KEYSET_ORACLE Oracle RDBMS.
CRYPT_KEYSET_POSTGRES Postgres RDBMS.

These keyset types are covered in more detail below.

The keyset options are:

Keyset Option Description

CRYPT_KEYOPT_CREATE Create a new keyset. This option is only
valid for writeable keyset types, which
includes keysets implemented as
relational databases, cryptlib key files,
and some smart cards.

CRYPT_KEYOPT_NONE No special access options (this option

Creating/Destroying Keyset Objects 43

Keyset Option Description
implies read/write access).

CRYPT_KEYOPT_READONLY Read-only keyset access. This option is
automatically enabled by cryptlib for
keyset types which have read-only
restrictions enforced by the nature of the
keyset, the operating system, or user
access rights.

Unless you specifically require write
access to the keyset, you should use this
option since it allows cryptlib to optimise
its buffering and access strategies for the
keyset.

These options are also covered in more detail below.

The keysetLocation varies depending on the keyset type and is explained in
more detail below. Note that the CRYPT_KEYSET is passed to cryptKeysetOpen
by reference, as the function modifies it when it creates the keyset object. In all other
routines, CRYPT_KEYSET is passed by value.

More details on opening connections to each type of keyset are given below.

File Keysets
For cryptlib key files and PGP keyrings, the keyset location is the path to the disk
file. For example to open a connection to a PGP public keyring located in /usr/pub/,
you would use:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_FILE,
"/usr/pub/pubring.pgp", CRYPT_KEYOPT_READONLY);

cryptlib will automatically determine the file type and access it in the appropriate
manner. As another example, to open a connection to a cryptlib key located in the
KEYS share on the server FILESERVER, you would use:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_FILE,
"\\FILESERVER\KEYS\KEY.P15", CRYPT_KEYOPT_READONLY);

For PGP keysets, cryptlib will automatically set the access mode to read-only even if
you don’t specify the CRYPT_KEYOPT_READONLY option, since writes to this
keyset type aren’t supported. If you try to write a key to this keyset type, cryptlib will
return CRYPT_ERROR_PERMISSION to indicate that you don’t have permission to
write to the file. The only file keyset type which can be written to is a cryptlib private
key file. This keyset contains a one or more (usually encrypted) private keys and
certificates. To create a new cryptlib keyset you would use:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_FILE, "Private key
file.p15", CRYPT_KEYOPT_CREATE);

If a cryptlib keyset of the given name already exists and you open it with CRYPT_-
KEYOPT_CREATE, cryptlib will erase it before creating a new one in its place. The
erasure process involves overwriting the original keyset with random data and
committing the write to disk to ensure that the data really is overwritten, truncating its
length to 0 bytes, resetting the file timestamp and attributes, and deleting the file to
ensure that no trace of the previous key remains. The new keyset is then created in its
place.

Key Databases44

For security reasons, cryptlib won’t overwrite an existing file if it isn’t a normal file
(for example if it’s a hard or symbolic link, if it’s a device name, or if it has other
unusual properties such as having a stream fattach() ’d to it).

Where the operating system supports it, cryptlib will set the security options on the
keyset so that only the person who created it (and, in some cases, the system
administrator) can access it. For example under Unix the file access bits are set to
allow only the file owner to access the file, and under Windows NT the files access
control list is set so that only the user who owns the file can access or change it.
Since not even the system administrator can access the keyset under Windows NT,
the user may need to manually enable access for others to allow the file to be backed
up or copied.

When you open a keyset which contains private keys, you should bind the it to the
current thread for added security to ensure that no other threads can access the file or
the keys read from it:

CRYPT_KEYSET cryptKeyset;

/* Open a keyset and claim it for exclusive use */
cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_FILE, "Private key file",

CRYPT_KEYOPT_READONLY);
cryptSetAttribute(cryptKeyset, CRYPT_PROPERTY_OWNER, threadID);

You can find out more about binding objects to threads in “Object Security” on page
16.

HTTP Keysets
For keys accessed via a web page URL, there’s no need to specify a keyset name
since the certificate or CRL to be fetched is implicitly specified by the URL. Because
of this, HTTP keysets don’t have names:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_HTTP, NULL,
CRYPT_KEYOPT_READONLY);

For each certificate or CRL that you want to fetch you give the location (URL) as the
key name:

cryptGetPublicKey(cryptKeyset, &cryptCert, CRYPT_KEYID_NAME, url);

Once you’ve created an HTTP keyset object, you can read multiple keys through it by
specifying a new URL for each key read.

cryptlib provides various HTTP-related configuration options which allow you to
specify the use of an HTTP proxy used to access the Internet, and control the timeout
when accessing a URL. These options are:

Configuration Option Description

CRYPT_OPTION_KEYS_-
HTTP_PROXY

The HTTP proxy to use for Internet access,
defaulting to none.

CRYPT_OPTION_KEYS_-
HTTP_TIMEOUT

The timeout when reading a certificate or
CRL via HTTP, defaulting to 60 seconds.

The CRL’s provided by some CA’s can become quite large, so you may need to play
with timeouts in order to allow the entire CRL to be downloaded if the link is slow or
congested.

LDAP Keysets
For keys stored in an LDAP directory, the keyset location is the name of the LDAP
server, with an optional port if access is via a nonstandard port. For example if the
LDAP server was called directory.ldapserver.com , you would access the
keyset with:

CRYPT_KEYSET cryptKeyset;

Creating/Destroying Keyset Objects 45

cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_LDAP,
"directory.ldapserver.com", CRYPT_KEYOPT_READONLY);

If the server is configured to allow access on a nonstandard port, you can append the
port to the server name in the usual manner for URL’s. For example if the server
mentioned above listened on port 8389 instead of the usual 389 you would use:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_LDAP,
"directory.ldapserver.com:8389", CRYPT_KEYOPT_READONLY);

You can also optionally include the ldap:// or ldaps:// protocol specifiers in
the URL, these are ignored by cryptlib.

The storage of certificates in LDAP directories is currently somewhat haphazard and
vendor-dependent, and you may need to adjust cryptlib’s LDAP configuration options
to work with a particular vendors idea of how certificates and CRL’s should be stored
on a server. In order to make it easier to adapt cryptlib to work with different vendors
ways of storing information in a directory, cryptlib provides various LDAP-related
configuration options which allow you to specify the X.500 objects and attributes
used for certificate storage. These options are:

Configuration Option Description

CRYPT_OPTION_KEYS_-
LDAP_CERTNAME

CRYPT_OPTION_KEYS_-
LDAP_CACERTNAME

The X.500 attribute which certificates are
stored as. For some reason certificates
belonging to certification authorities (CA’s)
are stored under their own attribute type, so if
a search for a certificate fails cryptlib will try
again using the CA certificate attribute
(there’s no easy way to tell in advance how a
certificate will be stored, so it’s necessary to
do it this way).

The default settings for these options are
userCertificate;binary and
cACertificate;binary . Note the use of
the binary qualifier, this is required for a
number of directories which would otherwise
try and encode the returned information as
text rather than returning the raw certificate.

CRYPT_OPTION_KEYS_-
LDAP_CRLNAME

The X.500 attribute which certificate
revocation lists (CRL’s) are stored as,
defaulting to
certificateRevocationList;binary .

CRYPT_OPTION_KEYS_-
LDAP_EMAILNAME

The X.500 attribute which email addresses
are stored as, defaulting to emailAddress .
Since X.500 never defined an email address
attribute, various groups defined their own
ones, emailAddress is the most common
one.

CRYPT_OPTION_KEYS_-
LDAP_OBJECTCLASS

The X.500 object class, defaulting to
inetOrgPerson .

The default settings used by cryptlib have been chosen to have the best chance of
working with the most widely-deployed LDAP servers currently in use.

Relational Database Keysets
For keys stored in a relational database, the keyset location is the access path to the
database. The nature of the access path depends on the database type, and ranges

Key Databases46

from an alias or label which identifies the database (for example an ODBC data
source) through to a complex combination of the name or address of the server which
contains the database, the name of the database on the server, and the user name and
password required to access the database. In some cases you may need to use
cryptKeysetOpenEx to access keysets which require the more complex types of
access parameters.

The exact keyset type also depends on the operating system with which cryptlib is
being used. Under Windows 3.x, Windows’95/98, and Windows NT, all database
keyset types are accessed as ODBC data sources with the keyset type
CRYPT_KEYSET_ODBC. Under Unix, which doesn’t provide a general vendor-
independant database access system, database keyset types are accessed in a manner
which specifies the database type being used, for example an Oracle database keyset
would be accessed using a keyset type of CRYPT_KEYSET_ORACLE. With some
systems such as DOS, which don’t support easy external database access, cryptlib
can’t be used with a database keyset and is restricted to the simpler keyset types such
as cryptlib private key files and PGP keyrings.

The simplest type of keyset to access is a local database which requires no extra
parameters such as a user name or password. An example of this is an ODBC data
source on the local machine. Let’s assume that the keyset is stored in an MS Access
database which is accessed through the “PublicKeys” data source. This keyset is
accessed with:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_ODBC, "PublicKeys",
CRYPT_KEYOPT_READONLY);

The CRYPT_KEYSET_ODBC keyset type is used to access any keyset which is
configurable as an ODBC data source (which in practice means virtually any kind of
database, although some of the more primitive legacy formats will have trouble
storing the long records required to hold public keys).

Some databases allow a collection of parameters to be specified by combining them
into an access path with special delimiters. For example Oracle databases allow an
access path to take the form user@server:name , so you could access a keyset
stored in the Oracle database “services” located on the server “dbhost” with the user
name “system” using:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_ORACLE,
"system@dbhost:services", CRYPT_KEYOPT_READONLY);

An alternative way to do this is to use cryptKeysetOpenEx, which allows the
individual parameters to be specified separately.

In the examples shown above, the keyset was opened with the CRYPT_KEYOPT_-
READONLY option. The use of this option is recommended when you will use the
keyset to retrieve a key but not store one (which is usually the case) since it allows
cryptlib to optimise its transaction management with the database backend. This can
lead to significant performance improvements due to the different data buffering and
locking strategies which can be employed if it is known that the database won’t be
updated. If you try to write a key to a keyset which has been opened in read-only
mode, cryptlib will return CRYPT_ERROR_PERMISSION to indicate that you don’t
have permission to write to the database.

To create a new key database, you can use the CRYPT_KEYOPT_CREATE flag. If
a keyset of the given name already exists, cryptlib will return CRYPT_ERROR_-
DUPLICATE, otherwise it will create a new key database ready to have keys added
to it.

Creating/Destroying Keyset Objects 47

Smart Card Keysets
For cryptlib private key keysets stored on smart cards, the keyset location is the name
of the smart card driver interface. For example to open a connection to a private key
stored on a basic memory card in a Gemplus reader, you would use:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_SMARTCARD, "Gemplus",
CRYPT_KEYOPT_READONLY);

The interface name isn’t case sensitive, so you could specify it as “Gemplus”,
“GEMPLUS”, or “gemplus”.

To create a new keyset containing a private key on the card, you would use:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_SMARTCARD, "Gemplus",
CRYPT_KEYOPT_CREATE);

If a keyset already exists on the card, cryptlib will erase it before creating a new
keyset in its place.

cryptlib supports the following smart card interfaces:

Interface Details

ASE Aladdin readers accessed via the Aladding Smartcard
Environment (ASE). The interface defaults to using the
default Aladdin reader type which is set by the ASE software.

Auto This is a generic reader interface which works with any card
reader which is accessed directly through the serial port (most
readers require special drivers and can’t be accessed directly).
The interface defaults to using a reader connected to the
COM2 serial port under Windows or /dev/ttyb or
/dev/ttyS1 under Unix (depending on the Unix variant),
with an ISO 7816 memory card.

Gemplus Gemplus card readers accessed via the Gemplus drivers. The
interface defaults to using a GCR 410 reader connected to the
COM2 serial port, with automatic card type detection.

Towitoko Towitoko card readers accessed via the Towitoko drivers. The
interface defaults to using the default Towitoko reader which
is set by the driver software.

Since many reader types will require further parameters to identify the exact reader
and card type, and possibly reader communications parameters, you may need to use
cryptKeysetOpenEx to open a connection to these keyset types.

cryptlib is structured to allow easy support for many types of smart cards to be added
to the keyset interface, due to the lack of standard card types and driver interfaces
(the interfaces which are supported by manufacturers aren’t standardised, and the
interfaces which are standardised aren’t supported by manufacturers), most new cards
and readers require custom code to be added to cryptlib to interface them with the
keyset routines. If you require specific support for a particular card type or card
reader, please contact the cryptlib developers. For crypto cards, the preferred
interface is the encryption device interface covered in “Encryption Devices and
Modules” on page 140.

When you open a smart card keyset, you should bind the keyset to the current thread
for added security to ensure that no other threads can access the card or the keys read
from it:

CRYPT_KEYSET cryptKeyset;

Key Databases48

/* Open a keyset and claim it for exclusive use */
cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_SMARTCARD, "Gemplus",

CRYPT_KEYOPT_READONLY);
cryptSetAttribute(cryptKeyset, CRYPT_PROPERTY_OWNER, threadID);

You can find out more about binding objects to threads in “Object Security” on page
16.

Note that private keys typically range in size from 500-2K bytes, which means that
the smaller memory cards don’t have enough capacity to store the entire key. If the
write to the card fails, cryptlib will erase the card before returning an error code to
ensure that no traces of the partially-written key remain on the card.

Extended Keyset Initialisation
The cryptKeysetOpen function has a companion function cryptKeysetOpenEx
which may be used to perform an extended open on a keyset. This is needed for
some types of database and LDAP keysets which require database and server names
and possibly a user name and password, and by some smart card types which require
extended information about card types and card reader variants. If a particular
parameter isn’t needed, you can set it to null and cryptlib will ignore it.

LDAP Keysets
For keys stored in an LDAP directory, the extra parameters which can be supplied
using cryptKeysetOpenEx are the the user name, the user password, and information
needed for an SSL connection to the LDAP server. Using the previous example of an
LDAP directory located at directory.ldapserver.com , the
cryptKeysetOpenEx version of the call would be:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpenEx(&cryptKeyset, CRYPT_KEYSET_LDAP,
"directory.ldapserver.com", "username", "password", NULL,
CRYPT_KEYOPT_READONLY);

which specifies the user name and password for connecting to the server rather than
using the basic anonymous connection name is used with cryptKeysetOpen. This
provides a standard, unsecured connection to the LDAP server.

If the server requires the use of an SSL connection for security, you would supply the
name of the SSL information as the last parameter in place of the null pointer. For
example for Netscape LDAP client access you need to specify the location of the
client certificate database:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpenEx(&cryptKeyset, CRYPT_KEYSET_LDAP,
"directory.ldapserver.com", "username", "password",
"/users/mozilla/.netscape/cert5.db", CRYPT_KEYOPT_READONLY);

If the server allows anonymous access over an SSL connection, you would omit the
user name and password and only provide the SSL information:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpenEx(&cryptKeyset, CRYPT_KEYSET_LDAP,
"directory.ldapserver.com", NULL, NULL,
"/users/mozilla/.netscape/cert5.db", CRYPT_KEYOPT_READONLY);

This gives more control over access to the keyset than that provided by the simpler
cryptKeysetOpen form.

Relational Database Keysets
For keys stored in a relational database, the extra parameters which can be supplied
using cryptKeysetOpenEx are the server name, the user name, and the user
password. Using the previous example of a keyset stored in an Oracle database, the
cryptKeysetOpenEx version of the call would be:

Extended Keyset Initialisation 49

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpenEx(&cryptKeyset, CRYPT_KEYSET_ORACLE, "dbhost",
"services", "system", NULL, CRYPT_KEYOPT_READONLY);

which specifies the database name, server, and user name as separate parameters
instead of using the unified "system@dbhost:services" name which was
used with cryptKeysetOpen. If the database requires a password to access it
alongside the parameters given above, you would supply the password as the last
parameter in place of the null pointer.

If the keyset were stored in the Postgres “keys” database on the local machine, you
would use:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpenEx(&cryptKeyset, CRYPT_KEYSET_POSTGRES, "localhost",
"keys", NULL, NULL, CRYPT_KEYOPT_READONLY);

cryptKeysetOpenEx also allows extended control over access to keyset types which
would normally be accessed using cryptKeysetOpen. For example if the keyset
were stored in an SQL Server database accessed through the ODBC data source
“ServerKeys” with the user name “Key User” and the password “password”, you
would use:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpenEx(&cryptKeyset, CRYPT_KEYSET_ODBC, NULL,
"ServerKeys", "Key Users", "password", CRYPT_KEYOPT_READONLY);

This gives more control over access to the keyset than that provided by the simpler
cryptKeysetOpen form.

Smart Card Keysets
For keys stored on a smart card, the extra parameters which can be supplied using
cryptKeysetOpenEx are the reader type, card type, and reader communications
parameters. The communications parameters are specified in a character string which
contains the serial port the reader is connected to, the baud rate, number of data bits,
parity type, and number of stop bits. Except for the Unix serial port device names,
the parameters aren’t case-sensitive. If you don’t specify a parameter by passing in a
null pointer, the default setting for that parameter will be used.

If the reader is accessed via the serial port, the communications parameters will be as
follows:

Parameter Settings

Serial port The name of the serial port to which the reader is connected,
which is COM1-4 under Windows or the serial port device
name under Unix (for example /dev/ttyS1).

Baud rate The baud rate at which the reader is accessed, typically
9600bps. Some readers will support access at 19,200bps,
38,400bps, or even higher.

Data bits The number of data bits, usually 8.

Parity The parity type, ‘N’ for no parity, ‘E’ for even parity, ‘O’ for
odd parity.

Stop bits The number of stop bits, usually 1.

These settings are combined into a single string by seperating them with commas.
There are two ways to specify the parameters, the short form which only specifies the
serial port (for example “COM3”), and the long form which specifies the entire set of
parameters (for example “COM3,9600,8,N,1”).

The “ASE” reader interface supports the following parameters:

Key Databases50

Parameter Settings

Reader type The name of the reader as set up using the ASE software. If
this parameter isn’t supplied, the reader will be accessed using
the port specified in the comms parameters.

Card type This interface supports the card types “Auto” (which tries to
determine which card is in the reader by scanning it), “T0”
(for ISO 7816 T=0 cards), “T14” (for ISO 7816 T=14 cards),
“Memory Auto” (which tries to determine which type of non-
ISO 7816 memory card is in the reader by scanning it), “2-
Wire” (for Siemens 2-wire protocol cards), and “I2C” (for I2C
memory cards).

Comms
parameters

This interface accesses readers using the short form of the
standard serial parameters, which specifies only the port on
which the reader is connected. The long form isn’t used since
the Aladdin readers use fixed serial port settings. If this
parameter isn’t supplied, the reader will be access using the
name specified in the reader type parameters.

The “Auto” reader interface supports the following parameters:

Parameter Settings

Reader type This interface works with any serial-port based reader, so you
should set this parameter to null.

Card type This interface works with any ISO 7816 type card, so you
should set this parameter to null.

Comms
parameters

This interface accesses readers using either the short or long
form of the standard serial parameters.

The “Gemplus” reader interface supports the following parameters:

Parameter Settings

Reader type This interface supports all Gemplus reader types, including
“GCR200”, “GCR400FD A”, “GCR400FD B”, “GCR400”,
“GCR500”, “GCI400DC”, “GCR610”, “GCR680”,
“GCR420”, “GPR”, “GPR400”, “GCM AUTO”, “GCM
CONN”, “IFD140”, “IFD140 200”, “IFD140 400”, and
“IFD220” (assuming that the Gemplus driver you’re using also
supports the given reader type). The default setting for this
parameter is “GCR 410”.

Card type This interface supports the card types “Auto” (which tries to
determine which type of card is present in the reader by
scanning it), “I2C” (for I2C memory cards), “ISO” and “COS”
(for standard ISO 7816 cards), and “FastISO” (for double-
clock-frequency ISO 7816 cards). If you definitely know the
card type in advance, you should specify the exact type since
this will make the initial access faster by avoiding the card
scanning which is performed by the “Auto” setting. The
default setting for this parameter is “Auto”.

Comms
parameters

This interface accesses readers using the short form of the
standard serial parameters, which specifies only the port on
which the reader is connected. The long form isn’t used since
the Gemplus drivers use fixed serial port settings. The default
setting for this parameter is “COM2”.

The “Towitoko” reader interface supports the following parameters:

Accessing a Keyset 51

Parameter Settings

Reader type This interface supports all Towitoko reader types, including
“CHIPDRIVE intern”, “CHIPDRIVE extern”, “CHIPDRIVE
extern II”, “CHIPDRIVE twin”, and “KartenZwerg”. The
default setting for this parameter is “CHIPDRIVE extern”.

Card type This interface automatically determines the correct card type
using the Towitoko drivers.

Comms
parameters

This interface automatically determines the correct port and
comms parameters using the Towitoko drivers.

Using the earlier example of a keyset stored on a card accessed via a Gemplus reader,
the cryptKeysetOpenEx version of the call to read a GP4K card (an I2C memory
card) using a GCR500 reader connected to the default serial port would be:

CRYPT_KEYSET cryptKeyset;

cryptKeysetOpenEx(&cryptKeyset, CRYPT_KEYSET_SMARTCARD, "Gemplus",
"GCR 500", "I2C", NULL, CRYPT_KEYOPT_READONLY);

Accessing a Keyset
Once you’ve established a connection to a keyset, you can read and write keys to it.
The type of access you can perform depends on the keyset type:

Type Access Allowed

cryptlib Read/write access to public/private keys and certificates stored
in a file, with the private key portion encrypted. This is the
cryptlib native keyset format for private keys.

Crypto
device

Read access to public/private keys and and read/write access
to certificates stored in the device. Devices aren’t general-
purpose keysets but can act like them for keys contained
within them.

Database Read/write access to X.509 public-keys stored in a relational
database. This is the cryptlib native keyset format for public
keys and provides a fast, scalable key storage mechanism.
The exact database format used depends on the platform, but
would typically include any ODBC database under Windows,
and Oracle, Postgres, and mSQL databases under Unix.

HTTP Read access to X.509 certificates and CRL’s accessed via
URL’s.

LDAP Read/write access to X.509 certificates and CRL’s stored in an
LDAP directory.

PGP Read-only access to PGP keyrings. This capability is provided
for compatibility reasons, actual key storage should be
performed using the cryptlib native keysets which are more
flexible than a PGP keyring (for example a number of cryptlib
key types can’t be stored as PGP-style keys).

Smart card Read/write access to a single private key stored (usually) in
encrypted form on a smart card.

The recommended method for public key storage is to use a relational database
keyset, which usually outperforms the other keyset types by a large margin, is highly
scalable, and is well suited for use in cases where data is already administered
through existing database servers.

Key Databases52

Reading a Key from a Keyset
Once you’ve set up a connection to a keyset, you can read one or more keys from it.
Some keysets such as HTTP URL’s and smart cards can contain only one key,
whereas cryptlib key files, PGP keyrings, relational databases, and LDAP keysets
may contain multiple keys.

You can also use a crypto device such as a smart card or Fortezza card as a keyset.
Reading a key from a device creates an encryption context which is handled via the
crypto device, so that although it looks just like any other encryption context it uses
the device to perform any encryption or signing.

The two functions which are used to read keys are cryptGetPublicKey and
cryptGetPrivateKey , which get a public and private key respectively. The key to be
read is identified through a key identifier, either the name or the email address of the
keys’ owner, specified as CRYPT_KEYID_NAME and CRYPT_KEYID_EMAIL, or
the label assigned to the key when it’s generated or when it’s written to the keyset,
also specified as CRYPT_KEYID_NAME.

cryptGetPublicKey returns a generic CRYPT_HANDLE which can be either a
CRYPT_CONTEXT or a CRYPT_CERTIFICATE depending on the keyset type.
Most public-key keysets will return a key certificate, but some keysets (like PGP
keyrings) don’t store the full certificate information and will return only an
encryption context rather than a key certificate. You don’t have to worry about the
difference between the two, they are interchangeable in most cryptlib functions.

Obtaining a Key for a User
The rules used to match the key ID to a key depend on the keyset type, and are as
follows:

Type User ID Handling

cryptlib
Smart card

The key ID is a label attached to the key when it’s generated
or loaded into the keyset or card, and is specified using
CRYPT_KEYID_NAME.

The key ID is matched as a substring of the label attached to
the key, with the match being performed in a case-insensitive
manner.

Crypto
device

The key ID is a label attached to the key when it’s loaded or
generated into the device, and is specified using
CRYPT_KEYID_NAME.

Database The key ID is either the name or the email address of the key
owner, and is matched in full in a case-insensitive manner.

HTTP The key is implicitly specified by the URL, which can be
given as either the CRYPT_KEYID_NAME or
CRYPT_KEYID_EMAIL.

LDAP The key ID is an X.500 distinguished name (DN), which is
neither a name nor an email address but a peculiar
construction which (in theory) uniquely identifies a key in the
X.500 directory. Since a DN isn’t really a name or an email
address, it’s possible to match an entry using either
CRYPT_KEYID_NAME or CRYPT_KEYID_EMAIL.

The key ID is matched in a manner which is controlled by the
way the LDAP server is configured (usually the match is case-
insensitive).

PGP The key ID is a name with an optional email address which is
usually given inside angle brackets. Since PGP keys usually
combine the key owners name and email address into a single

Reading a Key from a Keyset 53

Type User ID Handling
value, it’s possible to match an email address using
CRYPT_KEYID_NAME, and vice versa.

The key ID is matched as a substring of any of the names and
email addresses attached to the key, with the match being
performed in a case-insensitive manner. This is the same as
the matching performed by PGP.

Note that, like PGP, this will return the first key in the keyset
for which the name or email address matches the given key
ID. This may result in unexpected matches if the key ID that
you’re using is a substring of a number of names or email
addresses which are present in the keyring. Since email
addresses are more likely to be unique than names, it’s a good
idea to specify the email address to guarantee a correct match.

Assuming you wanted to read Noki Crow’s public key from a keyset, you would use:

CRYPT_HANDLE publicKey;

cryptGetPublicKey(cryptKeyset, &publicKey, CRYPT_KEYID_NAME, "Noki
S.Crow");

Note that the CRYPT_HANDLE is passed to cryptGetPublicKey by reference, as
the function modifies it when it creates the public key context. If you knew that the
keyset was a PGP keyring (which returns a CRYPT_CONTEXT rather than a
CRYPT_CERTIFICATE) you could also use:

CRYPT_CONTEXT publicKeyContext;

cryptGetPublicKey(cryptKeyset, &publicKeyContext, CRYPT_KEYID_NAME,
"Noki S.Crow");

although the two are functionally equivalent. Reading a key from a crypto device
works in an identical fashion:

CRYPT_HANDLE publicKey;

cryptGetPublicKey(cryptDevice, &publicKey, CRYPT_KEYID_NAME, "Noki
S.Crow");

The only real difference is that any encryption performed with the key is handled via
the crypto device, although cryptlib hides all of the details so that the key looks and
functions just like any other encryption context.

You can use cryptGetPublicKey not only on straight public-key keysets but also on
private key keysets, in which case it will return the public portion of the private key
or the key certificate associated with the key.

The other function which is used to obtain a key is cryptGetPrivateKey , which
differs from cryptGetPublicKey in that it expects a password alongside the user ID
if the key is being read from a keyset. This is required because private keys are
usually stored encrypted and the function needs a password to decrypt the key. If the
key is held in a crypto device (which requires a PIN or password when you open a
session with it, but not when you read a key), you can pass in a null pointer in place
of the password. For example if Noki Crow’s email address was noki@crow.com
and you wanted to read their private key, protected by the password “Password”,
from a keyset, you would use:

CRYPT_CONTEXT privateKeyContext;

cryptGetPrivateKey(cryptKeyset, &privateKeyContext,
CRYPT_KEYID_EMAIL, "noki@crow.com", "Password");

If you supply the wrong password to cryptGetPrivateKey , it will return CRYPT_-
ERROR_WRONGKEY. You can use this to automatically handle the case where the
key might not be protected by a password (for example if it’s stored in a crypto
device or a non-cryptlib keyset which doesn’t protect private keys) by first trying the
call without a password and then retrying it with a password if the first attempt fails

Key Databases54

with CRYPT_ERROR_WRONGKEY. cryptlib caches key reads, so the overhead of
the second key access attempt is negligible:

CRYPT_CONTEXT privateKeyContext;

/* Try to read the key without a password */
if(cryptGetPrivateKey(cryptKeyset, &privateKeyContext,

CRYPT_KEYID_NAME, name, NULL) == CRYPT_ERROR_WRONGKEY)
{
/* Ask the user for the keys' password and retry the read */
password = ...;
cryptGetPrivateKey(cryptKeyset, &privateKeyContext,

CRYPT_KEYID_NAME, name, password);
}

cryptGetPrivateKey always returns an encryption context.

General Keyset Queries
Where the keyset is implemented as a standard database, you can use cryptlib to
perform general queries to obtain one or more certificates which fit a given match
criterion. For example you could retrieve a list of all the keys which are set to expire
within the next fortnight (to warn their owners that they need to renew them), or
which belong to a company or a division within a company. You can also perform
more complex queries such as retrieving all certificates from a division within a
company which are set to expire within the next fortnight. cryptlib will return all
certificates which match the query you provide, finally returning CRYPT_ERROR_-
COMPLETE once all matching certificates have been obtained.

The general strategy for performing queries is as follows:

submit query
repeat

read query result
while query status != CRYPT_COMPLETE

You can cancel a query in progress at any time by submitting a new query consisting
of the command “cancel”.

Queries are submitted by setting the CRYPT_KEYSETINFO_QUERY attribute for a
keyset, which tells it how to perform the query. Let’s look at a very simple query
which is equivalent to a straight cryptGetPublicKey :

CRYPT_CERTIFICATE certificate;

cryptSetAttributeString(keyset, CRYPT_KEYSETINFO_QUERY,
"$email='noki@crow.com'", length);

do
status = cryptGetPublicKey(keyset, &certificate, CRYPT_KEYID_NONE,

NULL);
while(cryptStatusOK(status));

This will read each certificate corresponding to the given email address from the
database (there should only be a single matching certificate present for the email
address, so only one certificate should be returned). Note that the key ID is unused
because the keys which are returned are selected by the initial query and not by the
key identifier.

This example is an artificially simple one, it’s possible to submit queries of arbitrary
complexity in the form of full SQL queries. Since the key databases which are being
queried can have arbitrary names for the certificate attributes (corresponding to
database columns), cryptlib provides a mapping from certificate attribute to database
field names. An example of this mapping is shown in the code above, in which
$email is used to specify the email address attribute, which may have a completely
different name once it reaches the database backend. The certificate attribute names
are as follows:

Attribute Field

$C, $SP, $L, $O, Certificate country, state or province, locality,

Reading a Key from a Keyset 55

Attribute Field
$OU, $CN organisation, organisational unit, and common name.

$date Certificate expiry date

$email Certificate email address

You can use these attributes to build arbitrarily complex queries to retrieve particular
groups of certificates from a key database. For example to retrieve all certificates
issued for US users (obviously this is only practical with small databases) you would
use:

cryptSetAttributeString(keyset, CRYPT_KEYSETINFO_QUERY, "$C='US'",
length);

Extending this one stage further, you could retrieve all certificates issued to
Californian users with:

cryptSetAttributeString(keyset, CRYPT_KEYSETINFO_QUERY, "$C='US' AND
$SP='CA'", length);

Going another step beyond this, you could retrieve all certificates issued to users in
San Francisco:

cryptSetAttributeString(keyset, CRYPT_KEYSETINFO_QUERY, "$C='US' AND
$SP='CA' AND $L='San Francisco'", length);

Going even further than this, you could retrieve all certificates issued to users in San
Francisco whose names begin with an ‘a’:

cryptSetAttributeString(keyset, CRYPT_KEYSETINFO_QUERY, "$C='US' AND
$SP='CA' AND $L='San Francisco' AND $CN LIKE 'A%'", length);

These queries will return the certificates in whatever order the underlying database
returns them in. You can also specify that they be returned in a given order, for
example to order the certificates in the previous query by user name you would use:

cryptSetAttributeString(keyset, CRYPT_KEYSETINFO_QUERY, "$C='US' AND
$SP='CA' AND $L='San Francisco' ORDER BY $CN", length);

To return them in reverse order, you would use:

cryptSetAttributeString(keyset, CRYPT_KEYSETINFO_QUERY, "$C='US' AND
$SP='CA' AND $L='San Francisco' ORDER BY $CN DESCENDING", length);

The ability to selectively extract collections of certificates provides a convenient
mechanism for implementing a heirarchical certificate database browsing capability.
You can also use it to perform general-purposes queries and certificate extractions,
for example to return all certificates which will expire within the next week (and
which therefore need to be replaced or renewed), you would use:

cryptSetAttributeString(keyset, CRYPT_KEYSETINFO_QUERY, "$date +
1_week < today ", length);

To sort the results in order or urgency of replacement, you would use:

cryptSetAttributeString(keyset, CRYPT_KEYSETINFO_QUERY, "$date +
1_week < today ORDER BY $date", length);

To retrieve all certificates which don’t need replacement within the next week, you
could negate the previous query to give:

cryptSetAttributeString(keyset, CRYPT_KEYSETINFO_QUERY, "NOT $date +
1_week < today ", length);

As these examples show, cryptlibs keyset query capability provides the ability to
perform arbitrary general-purpose queries on keysets.

Once a query has begun running, it can return a considerable number of certificates.
If you try to initiate another query while the first one is in progress or perform a
standard read, write, or delete operation, cryptlib will return a CRYPT_ERROR_-
INCOMPLETE error to indicate that the query is still active. You can cancel the
currently active query at any point by setting the CRYPT_KEYSETINFO_QUERY
attribute to “cancel”:

Key Databases56

cryptSetAttributeString(keyset, CRYPT_KEYSETINFO_QUERY, "cancel", 6
);

This will clear the current query and prepare the keyset for another query or an
alternative operation such as a key read, write, or delete.

Handling Multiple Certificates with the Same Name
Sometimes a keyset may contain multiple certificates issued to the same person.
Whether this situation will occur varies by CA, some CA’s won’t issue multiple
certificates with the same name, some will, and some may modify the name to
eliminate conflicts (for example by adding unique ID values to the name or using
middle initials to disambiguate names). If multiple certificates exist, you can use
cryptKeysetQuery to read each in turn and try and find one which matches your
requirements (for example you might be able to filter them based on key usage or
some other parameter held in the certificate). The general idea here is to issue a
query based on the name and then read each certificate which matches the query until
you find an appropriate one:

cryptKeysetQuery();
while(cryptGetPublicKey() == CRYPT_OK && \

 certificate doesn't matches required usage)
/* Continue */;

cryptSetAttributeString("cancel");

This use of general queries allows the maximum flexibility in selecting certificates in
cases when multiple choices are present.

Writing a Key to a Keyset
Writing a key to a keyset isn’t as complex as reading it since there’s no need to
specify the key identification information which is needed to read a key, however
there are some restrictions on the type of key you can write to a keyset. Public-key
keysets such as database and LDAP keysets store full key certificates, so the object
which you write to these keysets must be a CRYPT_CERTIFICATE and not just a
CRYPT_CONTEXT. In contrast, keysets such as cryptlib key files and smart cards
can store public/private keys as well as certificates. If you try to write the incorrect
type of object to a keyset (for example a private key to a public key keyset), cryptlib
will return a CRYPT_ERROR_PARAM2 error to indicate that the object you are
trying to add is of the incorrect type for this keyset.

You can’t write a key to a crypto device because keys used with devices have to be
either created or generated inside the device. Similarly, you can’t create a key inside
a standard cryptlib context and then move it to the device later on, since the security
features of the device won’t allow this, and you can’t take a key created via a crypto
device and write it to a keyset, because it can’t be exported from the device. By using
crypto hardware to handle your keys you’re guaranteeing that the key is never
exposed outside the hardware, keeping it safe from any malicious code which might
be present in your system.

You can write a public key certificate to a keyset with cryptAddPublicKey , which
takes as parameters the keyset and the key certificate to write:

cryptAddPublicKey(cryptKeyset, pubKeyCertificate);

Since all identification information is contained in the certificate, there’s no need to
specify any extra data such as the certificate owners name or email address.

If you try to write a key to a read-only keyset, cryptlib will return CRYPT_ERROR_-
PERMISSION. If the certificate you are trying to write is already present in the
keyset, cryptlib will return CRYPT_ERROR_DUPLICATE. If the keyset is a public-
key keyset, you can use cryptDeleteKey to delete the existing certificate so you can
write the new one in its place. If the keyset is a cryptlib key file, smart card, or
crypto device, this would delete both the certificate and the key it corresponds to.

Deleting a Key 57

Writing a private key requires one extra parameter, the password which is used to
encrypt the private key components. cryptlib will use the default encryption method
(usually three-key triple DES) to encrypt the key with the given password, even if
you’re writing it to a supposedly secure medium like a smart card (even smart cards
can be hacked, so the triple DES encryption offers an extra layer of security).

To write a private key to a keyset you would use the corresponding
cryptAddPrivateKey function:

cryptAddPrivateKey(cryptKeyset, privKeyContext, password);

If you try to write a key to a read-only keyset, cryptlib will return CRYPT_ERROR_-
PERMISSION. If the keyset already contains the private key, cryptlib will return
CRYPT_ERROR_DUPLICATE and you will need to use cryptDeleteKey to delete
it before you can add the new key.

Although cryptlib and PGP can work directly with private keys, other formats like
X.509 certificates, S/MIME messages, and SSL require complex and convoluted
naming and identification schemes for their keys. Because of this, you can’t
immediately use a newly-generated private key with these formats for anything other
than signing a certification request or a self-signed certificate. To use it for any other
purpose, you need to obtain an X.509 certificate which identifies the key. The
process of obtaining a certificate and updating a keyset with it is covered in more
detail in “Maintaining Keys and Certificates” on page 114. Once you’ve obtained the
certificate, you can add it to the keyset and cryptlib will automatically associate it
with the key when you try to read the key.

If you are working with a database keyset, you can also add a certificate revocation
list (CRL) to the keyset. Since a CRL isn’t an actual key, you can’t read it back out
of the keyset (there’s nothing to read), but you can use it to check the revocation state
of certificates. CRL’s and their uses are explained in more detail in “Certificate
Revocation Lists” on page 120.

Deleting a Key
Deleting a key with cryptDeleteKey works in the same manner as reading a key,
with the key to delete being identified by a key ID in the usual manner. For example
if you wanted to delete S.Crow’s key from a keyset, you would use:

cryptDeleteKey(cryptKeyset, CRYPT_KEYID_NAME, "S.Crow");

Deleting a key from a crypto device is identical:

cryptDeleteKey(cryptDevice, CRYPT_KEYID_NAME, "S.Crow");

In the case of an LDAP directory, this will delete the entire entry, not just the
certificate attribute or attributes for the entry. In the case of a cryptlib key file, smart
card, or crypto device, this will delete the key and any certificates which may be
associated with it. If you try to delete a key from a read-only keyset, cryptlib will
return CRYPT_ERROR_PERMISSION. If the key you’re trying to delete isn’t
present in the keyset, cryptlib will return CRYPT_ERROR_NOTFOUND.

Encryption and Decryption58

Encryption and Decryption
Although envelope and keyset container objects provide an easy way to work with
encrypted data, it’s sometimes desirable to work at a lower level, either because it
provides more control over encryption parameters or because it’s more efficient than
the use of the higher-level functions. The objects which you use for lower-level
encryption functionality are encryption contexts. Internally, more complex objects
such as envelope and certificate objects also use encryption contexts, although these
are hidden and not accessible from the outside.

Creating/Destroying Encryption Contexts
To create an encryption context, you must specify the encryption algorithm and
optionally the encryption mode you want to use for that context. The available
encryption algorithms and modes are given in “Algorithms and Modes” on page 163.
For example, to create and destroy an encryption context for DES you would use the
following code:

CRYPT_CONTEXT cryptContext;

cryptCreateContext(&cryptContext, CRYPT_ALGO_DES);

/* Load key, perform en/decryption */

cryptDestroyContext(cryptContext);

The context will use the default encryption mode of CBC, which is the most secure
and efficient encryption mode. If you want to use a different mode, you can set the
context’s CRYPT_CTXINFO_MODE attribute to specify the mode to use. For
example to change the encryption mode used from CBC to CFB you would use:

cryptSetAttribute(cryptContext, CRYPT_CTXINFO_MODE, CRYPT_MODE_CFB);

In general you shouldn’t need to change the encryption mode, the other cryptlib
functions will automatically handle the mode choice for you. Public-key, hash, and
MAC contexts work in the same way, except that they don’t have different modes of
use so the CRYPT_CTXINFO_MODE attribute can’t be read or written for these
types of contexts. The availability of certain algorithms and encryption modes in
cryptlib does not mean that their use is recommended. Some are only present because
they are needed for certain protocols or required by some standards.

Note that the CRYPT_CONTEXT is passed to cryptCreateContext by reference, as
cryptCreateContext modifies it when it creates the encryption context. In almost all
other cryptlib routines, CRYPT_CONTEXT is passed by value. The contexts which
will be created are standard cryptlib contexts, to create a context which is handled via
a crypto device such as a smart card or Fortezza card, you should use
cryptCreateDeviceObject, which tells cryptlib to create a context in a crypto device.
The use of crypto devices is explained in “Encryption Devices and Modules” on page
140.

cryptDestroyContext has a generic equivalent function cryptDestroyObject which
takes a CRYPT_HANDLE parameter instead of a CRYPT_CONTEXT. This is
intended for use with objects which are referred to using generic handles, but can also
be used to specifically destroy encryption contexts — crytlib’s object management
routines will automatically sort out what to do with the handle or object.

Generating a Key into an Encryption Context
Once you’ve created an encryption context, the next step is to load a key into it.
These keys will typically be either one-off session keys which are discarded after use,
or long-term storage keys which are used to protect fixed data such as files or private
keys. You can create a one-off session key with cryptGenerateKey:

cryptGenerateKey(cryptContext);

Generating a Key into an Encryption Context 59

which will generate a key of a size which is appropriate for the encryption context. If
you want to generate a key of a particular length, you can use the
cryptGenerateKeyEx function which allows you specify the key size as its second
parameter. For example to generate a 256-bit (32-byte) key you would use:

cryptGenerateKey(cryptContext, 32);

Keys generated by cryptlib are useful when used with cryptExportKey /
cryptImportKey . Since cryptExportKey usually encrypts the generated key using
public-key encryption, you shouldn’t make it too long or it’ll be too big to be
encrypted. Unless there’s a specific reason for choosing the key length you should
use the cryptGenerateKey function and let cryptlib choose the correct key length for
you.

The only time when you may need to explicitly specify a key length is when you’re
using very short (in the vicinity of 512 bits) public keys to export Blowfish, RC2,
RC4, or RC5 keys. In this case the public key isn’t large enough to export the full-
length keys for these algorithms, and cryptExportKey will return the error code
CRYPT_ERROR_OVERFLOW to indicate that there’s too much data to export. The
solution is to either specify a shorter key length using cryptGenerateKeyEx, or,
preferably, to use a longer public key. This is only a problem with very short public
keys, when using the minimum recommended public key size of 1024 bits this
situation will never occur.

Calling cryptGenerateKey only makes sense for conventional, public-key, or MAC
contexts and will return the error code CRYPT_ERROR_NOTAVAIL for a hash
encryption context to indicate that this operation is not available for hash algorithms.
The generation of public/private key pairs has special requirements and is covered
further on.

To summarise the steps so far, you can set up an encryption context in its simplest
form so that it’s ready to encrypt data with:

CRYPT_CONTEXT cryptContext;

cryptCreateContext(&cryptContext, CRYPT_ALGO_3DES);
cryptGenerateKey(cryptContext);

/* Encrypt data */

cryptDestroyContext(cryptContext);

Once a key is generated into a context, you can’t load or generate a new key over the
top of it or change the encryption mode (for conventional encryption contexts). If
you try to do this, cryptlib will return CRYPT_ERROR_INITED to indicate that a
key is already loaded into the context.

Public/Private Key Generation
cryptlibs public/private key pair generation is mostly identical to conventional session
key generation, with the exception that before you can generate a key into a context
you need to set the CRYPT_CTXINFO_LABEL attribute which is later used to
identify the key when it’s written to or read from a keyset or a crypto device such as a
smart card or a Fortezza card. If you try to generate a key into a context without first
setting the key label, cryptlib will return CRYPT_ERROR_NOTINITED to indicate
that the label hasn’t been set yet. The process of generating a public/private key pair
is then:

CRYPT_CONTEXT privKeyContext;

cryptCreateContext(&privKeyContext, CRYPT_ALGO_RSA);
cryptSetAttributeString(privKeyContext, CRYPT_CTXINFO_LABEL, label,

labelLength);
cryptGenerateKey(privKeyContext);

As with conventional key generation, you can use cryptGenerateKeyEx to control
the size of the generated key. You can also change the default encryption and
signature keysizes using the cryptlib configuration options CRYPT_OPTION_-

Encryption and Decryption60

PKC_KEYSIZE and CRYPT_OPTION_SIG_KEYSIZE as explained in
“Miscellaneous Topics” on page 146.

Because the generation of larger public keys may take some time, cryptlib provides
an asynchronous key generation capability which allows the key to be generated as a
background task or thread on those systems which provide this capability. You can
generate a key asynchronously with cryptGenerateKeyAsync, which works in the
same way as cryptGenerateKey. You can check the status of an asynchronous key
generation with cryptAsyncQuery, which will return CRYPT_ERROR_BUSY if the
key generation operation is in progress or CRYPT_OK if the operation has
completed. Any attempt to use the context while the key generation operation is still
in progress will also return CRYPT_ERROR_BUSY:

cryptGenerateKeyAsync(privKeyContext);
while(1)

{
/* Perform other task(s) */
/* ... */

/* Check whether the keygen has completed */
if(cryptAsyncQuery(privKeyContext) != CRYPT_ERROR_BUSY)

break;
}

You can cancel the asynchronous key generation using cryptAsyncCancel.

Since the background key generation depends on how the operating system schedules
threads, you shouldn’t call cryptAsyncQuery immediately after calling
cryptGenerateKeyAsync because the thread which performs the key generation may
not have had time to run yet. The code example given above (which performs other
work before querying the key generation progress) avoids any OS thread scheduling
issues by performing another task while the OS starts the key generation thread in the
background.

In general generating a (weak) 512-bit key is almost instantaneous, generating a 1024
bit key typically takes a few seconds, and generating a 2048 bit key takes anywhere
from seconds to minutes depending on the algorithm type and machine speed.

Deriving a Key into an Encryption Context
Sometimes you will need to obtain a fixed-format encryption key for a context from a
variable-length password or passphrase, or from any generic keying material. You
can do this by deriving a key into a context rather than loading it directly. Deriving a
key converts arbitrary-format keying information into the particular form required by
the context, as well as providing extra protection against password-guessing attacks
and other attacks which might take advantage of knowledge of the keying materials’
format.

The key derivation process takes two sets of input data, the keying material itself
(typically a password), and a salt value which is combined with the password to
ensure that the key is different each time (so even if you reuse the same password
multiple times, the key obtained from it will change each time. This ensures that
even if one password-based key is compromised, all the others remain secure).

The salt attribute is identified by CRYPT_CTXINFO_KEYING_SALT and ranges in
length from 64 bits (8 bytes) up to CRYPT_MAX_HASHSIZE. Using an 8-byte salt
is a good choice. The keying information attribute is identified by CRYPT_-
CTXINFO_KEYING_VALUE and can be of any length. To derive a key into a
context you would use:

cryptSetAttributeString(cryptContext, CRYPT_CTXINFO_KEYING_SALT,
salt, saltLength);

cryptSetAttributeString(cryptContext, CRYPT_CTXINFO_KEYING_VALUE,
passPhrase, passPhraseLength);

which takes the supplied passphrase and salt and converts them into an encryption
key in a format suitable for use with the encryption context. Use of the key
derivation capability is strongly recommended over loading keys directly into an

Loading Keys into Encryption Contexts 61

encryption context by setting the CRYPT_CTXINFO_KEY attribute since this often
requires intimate knowledge of algorithm details such as how keys of different
lengths are handled, how key bits are used, special considerations for key material,
and so on.

Note that you have to set a salt value before you set the keying information attribute.
If you don’t supply a salt, cryptlib will return CRYPT_ERROR_NOTINITED when
you try to supply the keying information to indicate that the salt hasn’t been set yet.
If you don’t want to manage a unique salt value per key, you can set the salt to a fixed
value (for example 64 bits of zeroes), although this isn’t recommended since it means
each use of the password will produce the same encryption key.

By default the key derivation process will repeatedly hash the input salt and keying
information with the HMAC-SHA1 MAC function to generate the key, and will
iterate the hashing process 500 times to make a passphrase-guessing attack more
difficult 2. If you want to change these values you can set the CRYPT_CTXINFO_-
KEYING_ALGO and CRYPT_CTXINFO_KEYING_ITERATIONS attributes for
the context before setting the salt and keying information attributes. For example to
change the number of iterations to 1000 for extra security before setting the salt and
key you would use:

cryptSetAttribute(cryptContext, CRYPT_CTXINFO_KEYING_ITERATIONS, 1000
);

cryptSetAttributeString(cryptContext, CRYPT_CTXINFO_KEYING_SALT,
salt, saltLength);

cryptSetAttributeString(cryptContext, CRYPT_CTXINFO_KEYING_VALUE,
passPhrase, passPhraseLength);

cryptlib will then use this value when deriving the key. You can also change the
default hash algorithm and iteration count using the cryptlib configuration options
CRYPT_OPTION_KEYING_ALGO and CRYPT_OPTION_KEYING_-
ITERATIONS as explained in “Miscellaneous Topics” on page 146.

To summarise the steps so far, you can set up an encryption context in its simplest
form so that it’s ready to encrypt data with:

CRYPT_CONTEXT cryptContext;

cryptCreateContext(&cryptContext, CRYPT_ALGO_3DES);
cryptSetAttributeString(cryptContext, CRYPT_CTXINFO_KEYING_SALT,

salt, saltLength);
cryptSetAttributeString(cryptContext, CRYPT_CTXINFO_KEYING_VALUE,

passPhrase, strlen(passPhrase));

/* Encrypt data */

cryptDestroyContext(cryptContext);

Since public-key encryption uses a different type of key than other context types, you
can’t derive a key into a public or private key context.

Once a key is derived into a context, you can’t load or generate a new key over the
top of it or change the encryption mode (for conventional encryption contexts). If
you try to do this, cryptlib will return CRYPT_ERROR_INITED to indicate that a
key is already loaded into the context.

Loading Keys into Encryption Contexts
If necessary you can also manually load a raw key into an encryption context by
setting the CRYPT_CTXINFO_KEY attribute. For example to load a raw 128-bit
key “0123456789ABCDEF” into an IDEA conventional encryption context you
would use:

cryptSetAttributeString(cryptContext, CRYPT_CTXINFO_KEY,
"0123456789ABCDEF", 16);

2It actually does a lot more than just hashing the passphrase, including performing processing steps designed to
defeat various sophisticated attacks on the key-hashing process.

Encryption and Decryption62

Unless you need to perform low-level key management yourself, you should avoid
loading keys directly in this manner. The previous key load should really have been
done by setting the CRYPT_CTXINFO_KEYING_SALT and CRYPT_CTXINFO_-
KEYING_VALUE attributes to derive the key into the context.

For public-key encryption a key will typically have a number of components so you
can’t set the key directly. Instead you load the key components into a
CRYPT_PKCINFO structure and then set this as the CRYPT_CTXINFO_KEY
attribute:

cryptSetAttributeString(cryptContext, CRYPT_CTXINFO_KEY, &rsaKey,
CRYPT_UNUSED);

More information on working with CRYPT_PKCINFO data structures is given in
“Working with Public/Private Keys” on page 61.

Once a key is loaded into a context, you can’t load or generate a new key over the top
of it or change the encryption mode (for conventional encryption contexts). If you try
to do this, cryptlib will return CRYPT_ERROR_INITED to indicate that a key is
already loaded into the context.

If you need to reserve space for conventional and public/private keys, you can use the
CRYPT_MAX_KEYSIZE and CRYPT_MAX_PKCSIZE defines to determine the
mount of memory you need. No key used by cryptlib will ever need more storage
than the settings given in these defines. Note that the CRYPT_MAX_PKCSIZE
value specifies the maximum size of an individual key component, since
public/private keys are usually composed of a number of components the overall size
is larger than this.

Loading Initialisation Vectors
For conventional-key encryption contexts you can also load an initialisation vector
(IV) into the context if the encryption mode being used supports an IV, although
when you’re using a context to encrypt data you can leave this to cryptlib to perform
automatically when you call cryptEncrypt for the first time. IV’s are required for
the CBC, CFB, and OFB encryption modes. To load an IV you set the
CRYPT_CTXINFO_IV attribute:

cryptSetAttributeString(cryptContext, CRYPT_CTXINFO_IV, iv, ivSize);

To retrieve the IV which you have loaded or which has been generated for you by
cryptlib you read the value of the attribute.

Trying to get or set the value of this attribute will return the error code CRYPT_-
ERROR_NOTAVAIL for a hash, MAC, or public key encryption context or
conventional encryption context with an encryption mode which doesn’t use an IV to
indicate that these operations are not available for this type of context.

If you need to reserve space for IV’s, you can use the CRYPT_MAX_IVSIZE define
to determine the mount of memory you need. No IV used by cryptlib will ever need
more storage than the setting given in this define.

Working with Public/Private Keys
Since public/private keys typically have multiple components, you can’t set them
directly as a CRYPT_CTXINFO_KEY attribute. Instead, you load them into a
CRYPT_PKCINFO structure and then set that as a CRYPT_CTXINFO_KEY_-
COMPONENTS attribute. There are several CRYPT_PKCINFO structures, one for
each class of public-key algorithm supported by cryptlib. The CRYPT_PKCINFO
structures are described in “Data Structures” on page 173.

As with public/private key pair generation, you need to set the CRYPT_CTXINFO_-
LABEL attribute to a unique value used to identify the key before you can load a key
value. If you try to load a key into a context without first setting the key label,
cryptlib will return CRYPT_ERROR_NOTINITED to indicate that the label hasn’t
been set yet.

Working with Public/Private Keys 63

Once a key is loaded into a context, you can’t load or generate a new key over the top
of it. If you try to do this, cryptlib will return CRYPT_ERROR_INITED to indicate
that a key is already loaded into the context.

If you need to reserve space for public/private key components, you can use the
CRYPT_MAX_PKCSIZE define to determine the mount of memory you need. No
key used by cryptlib will ever need more storage than the settings given in these
defines. Note that the CRYPT_MAX_PKCSIZE value specifies the maximum size
of an individual key component, since public/private keys are usually composed of a
number of components the overall size is larger than this.

Unless you explicitly need to load raw public/private key components into an
encryption context, you should avoid loading keys directly in this manner and should
instead use the key database access functions to load the key for you. These are
described in “Key Databases” on page 40.

In addition, because the public key component manipulation functions need to
perform low-level access to the CRYPT_PKCINFO data structures, they are
implemented as C preprocessor macros and can’t be translated into other languages
such as Visual Basic and Delphi. If you’re programming in a language other than C
or C++, you should always use keyset objects to load and store keys rather than trying
to load them using CRYPT_CTXINFO_KEY_COMPONENTS.

Loading Multibyte Integers
The multibyte integer strings which make up public and private keys are stored in
big-endian format with the most significant digit first:

0000000000000000000000000000000xxxxxxxxxxxxxxxxxxx

For example the number 123456789 would be stored in big-endian format as:

000123456789

(with the remainder of the value padded with zeroes). In practice the numbers won’t
be stored with excessively long precision as they are in the above examples, so
instead of being stored with 50 digits of precision of which 41 bytes contain zero
padding, they would be stored with 9 digits of precision:

123456789

A multibyte integer therefore consists of two parameters, the data itself and the
precision to which it is stored. When you load multibyte integer components into a
CRYPT_PKCINFO structure you need to specify both of these parameters.

Before you can use the CRYPT_PKCINFO structure, you need to initialise it with
cryptInitComponents() , which takes as parameter the type of the key, either
CRYPT_KEYTYPE_PRIVATE or CRYPT_KEYTYPE_PUBLIC:

CRYPT_PKCINFO_RSA rsaKey;

cryptInitComponents(rsaKey, CRYPT_KEYTYPE_PRIVATE);

Now you can load the multibyte integer strings by using cryptSetComponent() ,
specifying the value to be loaded, the multibyte integer data, and the integer length in
bits:

cryptSetComponent(rsaKey.n, modulus, 1024);
cryptSetComponent(rsaKey.e, pubExponent, 17);
cryptSetComponent(rsaKey.d, privExponent, 1024);

Once all the parameters are set up, you can use the result as the CRYPT_CTXINFO_-
KEY_COMPONENTS as explained above. Once you’ve finished working with the
CRYPT_PKCINFO information, use cryptDestroyComponents to destroy the
information:

cryptDestroyComponents(rsaKey);

The Diffie-Hellman, DSA, and Elgamal algorithms share the same key format and all
use the CRYPT_PKCINFO_DLP structure to store their key components. DLP is

Encryption and Decryption64

short for Discrete Logarithm Problem, the common underlying mathematical
operation for the three cryptosystems.

To summarise the steps so far, you would load a public key into a DSA context with:

CRYPT_CONTEXT cryptContext;
CRYPT_PKCINFO_DLP dlpKey;

cryptCreateContext(cryptContext, CRYPT_ALGO_DSA);
cryptSetAttributeString(cryptContext, CRYPT_CTXINFO_LABEL, "DSA key",

7);
cryptInitComponents(dlpKey, CRYPT_KEYTYPE_PUBLIC);
cryptSetComponent(dlpKey.p, ...);
cryptSetComponent(dlpKey.g, ...);
cryptSetComponent(dlpKey.q, ...);
cryptSetComponent(dlpKey.y, ...);
cryptSetAttributeString (cryptContext, CRYPT_CTXINFO_KEY_COMPONENTS,

&dlpKey, sizeof(CRYPT_PKCINFO_DLP));
cryptDestroyComponents(dlpKey);

The context is now ready to be used to verify a DSA signature on a piece of data. If
you wanted to load a DSA private key (which consists of one extra component), you
would add:

cryptSetComponent(dlpKey.x, ...);

after the y component is loaded. This context can then be used to sign a piece of data.

Querying Encryption Contexts
A context has a number of attributes whose values you can get to obtain information
about it. These attributes contain details such as the algorithm type and name, the key
size (if appropriate), the key label (if this has been set), and various other details. The
information attributes are:

Value Type Description

CRYPT_CTXINFO_ALGO
CRYPT_CTXINFO_MODE

N Algorithm and mode

CRYPT_CTXINFO_BLOCKSIZE N Cipher block size in bytes

CRYPT_CTXINFO_IVSIZE N Cipher IV size in bytes

CRYPT_CTXINFO_KEYING_-
ALGO

CRYPT_CTXINFO_KEYING_-
ITERATIONS

CRYPT_CTXINFO_KEYING_-
SALT

N/S The algorithm and number of
iterations used to transform a
user-supplied key or password
into an algorithm-specific key for
the context, and the salt value
used in the transformation process

CRYPT_CTXINFO_KEYSIZE N Key size in bytes

CRYPT_CTXINFO_LABEL S Key label

CRYPT_CTXINFO_NAME_ALGO
CRYPT_CTXINFO_NAME_MODE

S Algorithm and mode name

For example to obtain the algorithm and mode used by an encryption context, you
would use:

CRYPT_ALGO cryptAlgo;
CRYPT_MODE cryptMode;

cryptGetAttribute(cryptContext, CRYPT_CTXINFO_ALGO, &cryptAlgo);
cryptGetAttribute(cryptContext, CRYPT_CTXINFO_MODE, &cryptMode);

Although these attributes are listed as context attributes, they also apply to anything
else which can act as a context action object, for example you can obtain algorithm,

Querying Encryption Contexts 65

mode, and key size values from a certificate since it can be used to encrypt or sign
just like a context:

CRYPT_ALGO cryptAlgo;
CRYPT_MODE cryptMode;

cryptGetAttribute(cryptCertificate, CRYPT_CTXINFO_ALGO, &cryptAlgo);
cryptGetAttribute(cryptCertificate, CRYPT_CTXINFO_MODE, &cryptMode);

If any of the user-supplied attributes haven’t been set and you try to read their value,
cryptlib will return CRYPT_ERROR_NOTINITED.

Encrypting/Decrypting Data66

Encrypting/Decrypting Data
Instead of indirectly encrypting and decrypting data using envelopes, you can also
directly process it using an encryption context object. This eliminates the processing
and encoding size overhead of envelopes, at the cost of slightly increased code
complexity because of the need to duplicate work which is usually performed by the
enveloping code.

Using Encryption Contexts to Encrypt/Decrypt Data
To encrypt or decrypt a block of data using an encryption context action object you
use:

cryptEncrypt(cryptContext, buffer, length);

and:

cryptDecrypt(cryptContext, buffer, length);

Hash and MAC algorithms don’t actually encrypt the data being hashed and can be
called via cryptEncrypt or cryptDecrypt . They require a final call with the length
set to 0 as a courtesy call to indicate to the hash or MAC function that this is the last
data block and that the function should take whatever special action is necessary for
this case:

cryptEncrypt(hashContext, buffer, length);
cryptEncrypt(hashContext, buffer, 0);

If you call cryptEncrypt or cryptDecrypt after making the final call with the length
set to 0, the function will return CRYPT_ERROR_COMPLETE to indicate that the
hashing has completed and cannot be continued. Once the hashing is complete, the
hash value is made available as the CRYPT_CTXINFO_HASHVALUE attribute
which you can read in the usual manner:

unsigned char hash[CRYPT_MAX_HASHSIZE];
int hashLength;

cryptGetAttributeString(cryptContext, CRYPT_CTXINFO_HASHVALUE, hash,
&hashLength);

The public-key algorithms encrypt a single block of data equal in length to the size of
the public key being used. For example if you are using a 1024-bit public key then
the length of the data to be encrypted should be 128 bytes. Preparation of the block
of data to be encrypted requires special care; in general you should use high-level
functions such as cryptExportKey / cryptImportKey and cryptCreateSignature/
cryptCheckSignature rather than cryptEncrypt and cryptDecrypt when working
with public-key algorithms. If the en/decryption operation fails due to incorrect
public or private key parameters or incorrectly formatted input data, the function will
return CRYPT_ERROR_FAILED to indicate that the operation failed.

If you’re using a block cipher in ECB or CBC mode, the encrypted data length must
be a multiple of the block size. If the encrypted data length is not a multiple of the
block size, the function will return CRYPT_ERROR_PARAM3 to indicate that the
length is invalid. To encrypt a byte at a time you should use a stream encryption
mode such as CFB or OFB, or better yet use an envelope which avoids the need to
handle algorithm-specific details.

If the encryption context doesn’t support the operation you are trying to perform (for
example calling cryptEncrypt with a DSA public key), the function will return
CRYPT_ERROR_NOTAVAIL to indicate that this functionality is not available.

If the key loaded into an encryption context doesn’t allow the operation you are
trying to perform (for example calling cryptDecrypt with an encrypt-only key), the
function will return CRYPT_ERROR_PERMISSION to indicate that the context
doesn’t have the required key permissions to perform the requested operation.
Similarly, if you’re using a private key context which is tied to a certificate or crypto

Using Encryption Contexts to Encrypt/Decrypt Data 67

device, the direct use of cryptEncrypt and cryptDecrypt could be used to bypass
security constraints placed on the context (for example by changing the data
formatting used with an encryption-only RSA context it’s possible to misuse it to
generate signatures even if the context is specifically intended for non-signature use).
Because of this, if a context is tied to a certificate or a crypto device, it can’t be used
directly with these low-level functions but only with a higher-level function like
cryptCreateSignature or with the enveloping code, which guarantee that a context
can’t be misused for a disallowed purpose. If you try to use a constrained context of
this type directly, the function will return CRYPT_ERROR_PERMISSION to
indicate that the context doesn’t have the required permissions to perform the
requested operation.

If an IV is required for the decryption and you haven’t loaded one into the context by
setting the CRYPT_CTXINFO_IV attribute, cryptDecrypt will return CRYPT_-
ERROR_NOTINITED to indicate that you need to load an IV before you can decrypt
the data. If the first 8 bytes of decrypted data are corrupted then you haven’t set up
the IV properly for the decryption. More information on setting up IV’s is given in
“Encryption and Decryption” on page 56.

Once an encryption context is set up, it can only be used for processing a single data
stream in an operation such as encrypting data, decrypting data, or hashing a
message. A context can’t be reused to encrypt a second message after the first one
has been encrypted, or to decrypt data after having encrypted data. This is because
the internal state of the context is determined by the operation being performed with
it, and performing two different operations with the same context causes the state
from the first operation to affect the second operation. For example if you use an
encryption context to encrypt two different files, cryptlib will see a single continuous
data stream (since it doesn’t know or care about the structure of the data being
encrypted). As a result the second file is treated as a continuation of the first one, and
can’t be decrypted unless the context is used to decrypt the first file before decrypting
the second one. Because of this you should always create a new encryption context
for each discrete data stream you will be processing, and never reuse contexts to
perform different operations. The one exception to this rule is when you’re using
cryptlib envelopes (described in “Enveloping ” on page 22), where you can push a
single encryption context into as many envelopes as you like. This is because an
envelope takes its own copy of the encryption context, leaving the original
untouched.

In practice this isn’t strictly accurate, you can encrypt multiple independent data
streams with a single context by loading a new IV for each new stream using the
CRYPT_CTXINFO_IV attribute. If you don’t understand how this would work then
it’s probably best to use a new context for each data stream.

Exchanging Keys68

Exchanging Keys
Although you can now encrypt and decrypt data with an encryption context, the key
you’re using is locked inside the context and (if you used cryptGenerateKey to
create it) won’t be known to you or the person you’re trying to communicate with.
To share the key with another party, you need to export it from the context in a secure
manner and the other party needs to import it into an encryption context of their own.
Because the key is a very sensitive and valuable resource, you can’t just read it out of
the context, but need to take special steps to protect the key once it leaves the context.
This is taken care of by the key export/import functions.

Exporting a Key
To exchange a key with another party, you use the cryptExportKey and
cryptImportKey functions in combination with a conventional or public-key
encryption context or public key certificate. Let’s say you’ve created a key in an
encryption context cryptContext and want to send it to someone whose public
key is in the encryption context publicKeyContext (you can also pass in a
private key if you want, cryptExportKey will only use the public key components,
although unless you’re the US government it’s not clear why you’d want to be in
possession of someone elses private key). To do this you’d use:

CRYPT_CONTEXT publicKeyContext, cryptContext;
void *encryptedKey;
int encryptedKeyLength;

/* Generate a key */
cryptCreateContext(&cryptContext, CRYPT_ALGO_3DES);
cryptGenerateKey(cryptContext);

/* Allocate memory for the encrypted key */
encryptedKey = malloc(...);

/* Export the key using a public-key encrypted blob */
cryptExportKey(encryptedKey, &encryptedKeyLength, publicKeyContext,

cryptContext);

The resulting public-key encrypted blob is placed in the memory buffer pointed to by
encryptedKey , and the length is stored in encryptedKeyLength . This leads
to a small problem: How do you know how big to make the buffer? The answer is to
use cryptExportKey to tell you. If you pass in a null pointer for encryptedKey ,
the function will set encryptedKeyLength to the size of the resulting blob, but
not do anything else. You can then use code like:

cryptExportKey(NULL, &encryptedKeyLength, publicKeyContext,
cryptContext);

encryptedKey = malloc(encryptedKeyLength);
cryptExportKey(encryptedKey, &encryptedKeyLength, publicKeyContext,

cryptContext);

to create the exported key blob. Note that due to encoding issues for some algorithms
the final exported blob may be one or two bytes smaller than the size which is
initially reported, since the true size can’t be determined until the key is actually
exported.

Alternatively, you can just reserve a reasonably sized block of memory and use that
to hold the encrypted key. “Reasonably sized” means a few Kb, a 4K block is plenty
(an encrypted key blob for a 1024-bit public key is only about 200 bytes long).

You can also use a public key certificate to export a key. If, instead of a public key
context, you had a key certificate contained in the certificate object
publicKeyCertificate , the code for the previous example would become:

CRYPT_CERTIFICATE publicKeyCertificate;
CRYPT_CONTEXT cryptContext;
void *encryptedKey;
int encryptedKeyLength;

Exporting a Key 69

/* Generate a key */
cryptCreateContext(&cryptContext, CRYPT_ALGO_3DES);
cryptGenerateKey(cryptContext);

/* Allocate memory for the encrypted key */
encryptedKey = malloc(...);

/* Export the key using a public-key encrypted blob */
cryptExportKey(encryptedKey, &encryptedKeyLength,

publicKeyCertificate, cryptContext);

The use of key certificates is explained in “Certificate Management” on page 76.

If the encryption context contains too much data to encode using the given public key
(for example trying to export an encryption context with a 600-bit key using a 512-bit
public key) the function will return CRYPT_ERROR_OVERFLOW. As a rule of
thumb a 1024-bit public key should be large enough to export the default key sizes
for any encryption context.

If the encryption part of the export operation fails due to incorrect public or private
key parameters, the function will return CRYPT_ERROR_FAILED to indicate that
the operation failed.

If the public key is stored in an encryption context with a certificate associated with it
or in a key certificate, there may be constraints on the key usage which are imposed
by the certificate. If the key can’t be used for the export operation, the function will
return CRYPT_ERROR_PERMISSION to indicate that the key isn’t valid for this
operation, you can find out more about the exact nature of the problem by reading the
error-related attributes as explained in “Miscellaneous Topics” on page 146.

Exporting using Conventional Encryption
You don’t need to use public-key encryption to export a key blob, it’s also possible to
use a conventional encryption context to export the key from another conventional
encryption context. For example if you were using the key derived from the
passphrase “This is a secret key” (which was also known to the other party) in an
encryption context keyContext you would use:

CRYPT_CONTEXT sharedContext, keyContext;
void *encryptedKey;
int encryptedKeyLength;

/* Derive the export key into an encryption context */
cryptCreateContext(&keyContext, CRYPT_ALGO_3DES);
cryptSetAttributeString(keyContext, CRYPT_CTXINFO_KEYING_SALT, salt,

saltLength);
cryptSetAttributeString(keyContext, CRYPT_CTXINFO_KEYING_VALUE, "This

is a secret key", 20);

/* Generate a key */
cryptCreateContext(&cryptContext, CRYPT_ALGO_3DES);
cryptGenerateKey(cryptContext);

/* Allocate memory for the encrypted key */
encryptedKey = malloc(...);

/* Export the key using a conventionally encrypted blob */
cryptExportKey(encryptedKey, &encryptedKeyLength, keyContext,

cryptContext);

You don’t need to use a derived key to export the session key, you could have loaded
the context in some other manner (for example from a smart card), but the sample
code shown above, and further on for the key import phase, assumes that you’ll be
deriving the export/import key from a password.

This kind of key export isn’t as convenient as using public keys since it requires that
both sides know the encryption key in keyContext (or at least know how to derive
it from some other keying material). One case where it’s useful is when you want to
encrypt data such as a disk file which will be decrypted later by the same person who

Exchanging Keys70

originally encrypted it. By prepending the key blob to the start of the encrypted file,
you can ensure that each file is encrypted with a different session key (this is exactly
what the cryptlib enveloping functions do). It also means you can change the
password on the file by changing the exported key blob, without needing to decrypt
and re-encrypt the entire file.

Importing a Key
Now that you’ve exported the key, the other party needs to import it. This is done
using the cryptImportKey function and the private key corresponding to the public
key used by the sender:

CRYPT_CONTEXT privateKeyContext, cryptContext;

/* Create a context for the imported key */
cryptCreateContext(&cryptContext, CRYPT_ALGO_3DES);

/* Import the key from the public-key encrypted blob */
cryptImportKey(encryptedKey, privateKeyContext, cryptContext);

Note the use of CRYPT_ALGO_3DES when creating the context for the imported
key, this assumes that both sides have agreed in advance on the use of a common
encryption algorithm to use (in this case triple DES). If the algorithm information
isn’t available, you’ll have to negotiate the details in some other way (this is normally
done for you by the enveloping code but isn’t available at this level).

To summarise, sharing an encryption context between two parties using public-key
encryption involves the following steps:

/* Party A creates the required encryption context and generates a key
into it */

cryptCreateContext(&cryptContext, CRYPT_ALGO_3DES);
cryptGenerateKey(cryptContext);

/* Party A exports the key using party B's public key */
cryptExportKey(encryptedKey, &encryptedKeyLength, publicKeyContext,

cryptContext);

/* Party B creates the encryption context to import the key into */
cryptCreateContext(&cryptContext, CRYPT_ALGO_3DES);

/* Party B imports the key using their private key */
cryptImportKey(encryptedKey, privateKeyContext, cryptContext);

If the decryption part of the import operation fails due to incorrect public or private
key parameters, the function will return CRYPT_ERROR_FAILED to indicate that
the operation failed. If the input data or decrypted data is corrupt and the key
couldn’t be recovered, the function will return CRYPT_ERROR_BADDATA. In
general CRYPT_ERROR_FAILED will be returned for incorrect public or private
key parameters and CRYPT_ERROR_BADDATA will be returned if the input data
has been corrupted. You can treat both of these as “key import failed” unless you
want to include special-case error handling for them.

If the public key is stored in an encryption context with a certificate associated with it
or in a key certificate, there may be constraints on the key usage which are imposed
by the certificate. If the key can’t be used for the import operation, the function will
return CRYPT_ERROR_PERMISSION to indicate that the key isn’t valid for this
operation. You can find out more about the exact nature of the problem by reading
the error-related attributes as explained in “Miscellaneous Topics” on page 146.

Importing using Conventional Encryption
If the key has been exported using conventional encryption, you can again use
conventional encryption to import it. Using the same key derived from the
passphrase “This is a secret key” which was used in the key export example, you
would use:

CRYPT_CONTEXT keyContext, cryptContext;

Querying an Exported Key Object 71

/* Derive the import key into an encryption context */
cryptCreateContext(&keyContext, CRYPT_ALGO_3DES);
cryptSetAttributeString(keyContext, CRYPT_CTXINFO_KEYING_SALT, salt,

saltLength);
cryptSetAttributeString(keyContext, CRYPT_CTXINFO_KEYING_VALUE, "This

is a secret key", 20);

/* Create a context for the imported key */
cryptCreateContext(&cryptContext, CRYPT_ALGO_3DES);

/* Import the key from the conventionally encrypted blob */
cryptImportKey(encryptedKey, keyContext, cryptContext);

Since the salt is a random value which changes for each key you derive, you won’t
know it in advance so you’ll have to obtain it by querying the exported key object as
explained below. Once you’ve queried the object, you can use the salt which is
returned with the query information to derive the import key as shown in the above
code.

Querying an Exported Key Object
So far it’s been assumed that you know what’s required to import the exported key
blob you’re given (that is, you know which type of processing to use to create the
encryption context needed to import a conventionally encrypted blob). However
sometimes you may not know this in advance, which is where the cryptQueryObject
function comes in. cryptQueryObject is used to obtain information on the exported
key blob which might be required to import it. You can also use cryptQueryObject
to obtain information on signature blobs, as explained in “Signing Data” on page 72.

The function takes as parameters the object you want to query, and a pointer to a
CRYPT_OBJECT_INFO structure which is described in “Data Structures” on page
173. The object type will be either a CRYPT_OBJECT_ENCRYPTED_KEY for a
conventionally encrypted exported key, a CRYPT_OBJECT_PKCENCRYPTED_-
KEY for a public-key encrypted exported key, or a CRYPT_OBJECT_-
KEYAGREEMENT for a key-agreement key. If you were given an arbitrary object
of an unknown type you’d use the following code to handle it:

CRYPT_OBJECT_INFO cryptObjectInfo;

cryptQueryObject(object, &cryptObjectInfo);
if(cryptObjectInfo.objectType == CRYPT_OBJECT_ENCRYPTED_KEY)

/* Import the key using conventional encryption */
else

if(cryptObjectInfo.objectType == CRYPT_OBJECT_PKCENCRYPTED_KEY ||
cryptObjectInfo.objectType == CRYPT_OBJECT_KEYAGREEMENT)

 /* Import the key using public-key encryption */
else
 /* Error */

Any CRYPT_OBJECT_INFO fields which aren’t relevant for this type of object are
set to null or zero as appropriate.

Once you’ve found out what type of object you have, you can use the other
information returned by cryptQueryObject to process the object. For both
conventional and public-key encrypted exported objects you can find out which
encryption algorithm and mode were used to export the key using the cryptAlgo
and cryptMode fields. For conventionally encrypted exported objects you can
obtain the salt needed to derive the import key from the salt and saltSize fields.

Extended Key Export/Import
The cryptExportKey and cryptImportKey functions described above export and
import keys in the cryptlib default format (which, for the technically inclined, is the
Cryptographic Message Syntax format with key identifiers used to denote public
keys). The default cryptlib format has been chosen to be independent of the
underlying key format, so that it works equally well with any key type including
X.509 certificates, PGP keys, and any other key storage format.

Exchanging Keys72

Alongside the default format, cryptlib supports the export and import of keys in other
formats using cryptExportKeyEx and cryptImportKeyEx . cryptExportKeyEx
works like cryptExportKey but takes an extra parameter which specifies the format
to use for the exported keys. The formats are:

Format Description

CRYPT_FORMAT_CMS
CRYPT_FORMAT_SMIME

This is an older variation of the
Cryptographic Message Syntax and is also
known as S/MIME version 2 or 3 and
PKCS #7. This format only allows public-
key-based export, and the public key must
be stored as an X.509 certificate.

CRYPT_FORMAT_CRYPTLIBThis is the default cryptlib format and can
be used with any type of key. When used
for public-key based key export, this
format is also known as a newer variation
of S/MIME version 3.

Apart from the format specifier and the restrictions on key types available with some
formats, the extended export/import functions work identically to the standard
export/import functions (in fact the two import functions map to the same function
since cryptlib automatically determines the correct format to use and handles it
appropriately).

Key Agreement
The Diffie-Hellman key agreement capability is currently disabled since, unlike RSA
and conventional key exchange, there’s no widely-accepted standard format for it
(DH with SSL is barely supported and requires all of SSL to work, ssh v2 is barely
supported, CMS is unsupported, and IKE requires all of IPSEC to work). If a widely-
accepted standard emerges, cryptlib will use that format. Previous versions of
cryptlib used a combination of PKCS #3, PKCS #5, and PKCS #7 formats and
mechanisms to handle DH key agreement.

cryptlib supports a third kind of key export/import which doesn’t actually export or
import a key but merely provides a means of agreeing on a shared secret key with
another party. You don’t have to explicitly load of generate a session key for this one
since the act of performing the key exchange will create a random, secret shared key.
To use this form of key exchange, both parties call cryptExportKey to generate the
blob to send to the other party, and then both in turn call cryptImportKey to import
the blob sent by the other party.

The use of cryptExportKey /cryptImportKey for key agreement rather than key
exchange is indicated by the use of a key agreement algorithm for the context which
would normally be used to export the key. The key agreement algorithm used by
cryptlib is the Diffie-Hellman (DH) key exchange algorithm, CRYPT_ALGO_DH.
Creating a Diffie-Hellman context and loading a key into it is explained in “Working
with Public/Private Keys” on page 61. In the following code the resulting Diffie-
Hellman context is referred to as dhContext .

Since there’s a two-way exchange of messages, both parties must create an identical
“template” encryption context so cryptExportKey knows what kind of key to export.
Lets assume that both sides know they’ll be using Blowfish in CFB mode. The first
step of the key exchange is therefore:

/* Create the key template */
cryptCreateContext(&cryptContext, CRYPT_ALGO_BLOWFISH);
cryptSetAttribute(cryptContext, CRYPT_CTXINFO_MODE, CRYPT_MODE_CFB);

/* Export the key using the template */
cryptExportKey(encryptedKey, &encryptedKeyLength, dhContext,

cryptContext);
cryptDestroyContext(cryptContext);

Key Agreement 73

Note that there’s no need to load a key into the template, since this is generated
automatically as part of the export/import process. In addition the template is
destroyed once the key has been exported, since there’s no further use for it — it
merely acts as a template to tell cryptExportKey what to do.

Both parties now exchange encryptedKey blobs, and then use:

cryptImportKey(encryptedKey, dhContext, cryptContext);

to create the cryptContext containing the shared key.

The agreement process requires that both sides export their own encryptedKey
blobs before they import the other sides encryptedKey blob. A side-effect of this
is that it allows additional checking on the key agreement process to be performed to
guard against things like triple DES turning into 40-bit RC4 during transmission. If
you try to import another parties encryptedKey blob without having first exported
your own encryptedKey blob, cryptImportKey will return
CRYPT_ERROR_NOTINITED.

If the en/decryption part of the export/import operation fails due to incorrect public or
private key parameters, the function will return CRYPT_ERROR_FAILED to
indicate that the operation failed. If the input data or decrypted data is corrupt and the
key couldn’t be recovered, the function will return CRYPT_ERROR_BADDATA. In
general CRYPT_ ERROR_FAILED will be returned for incorrect key parameters and
CRYPT_ ERROR_BADDATA will be returned if the input data has been corrupted.
You can treat both of these as “key export/import failed” unless you want to include
special-case error handling for them.

Signing Data74

Signing Data
Most public-key encryption algorithms can be used to generate digital signatures on
data. A digital signature is created by signing the contents of a hash context with a
private key to create a signature blob, and verified by checking the signature blob
with the corresponding public key.

To do this, you use the cryptCreateSignature and cryptCheckSignature functions
in combination with a public-key encryption context. Let’s say you’ve hashed some
data with an SHA-1 hash context hashContext and want to sign it with your
private key in the encryption context signatureKeyContext . To do this you’d
use:

CRYPT_CONTEXT signatureKeyContext, hashContext;
void *signature;
int signatureLength;

/* Create a hash context */
cryptCreateContext(&hashContext, CRYPT_ALGO_SHA);

/* Hash the data */
cryptEncrypt(hashContext, data, dataLength);
cryptEncrypt(hashContext, data, 0);

/* Allocate memory for the signature */
signature = malloc(...);

/* Sign the hash to create a signature blob */
cryptCreateSignature(signature, signatureLength, signatureKeyContext,

hashContext);
cryptDestroyContext(hashContext);

The resulting signature blob is placed in the memory buffer pointed to by
signature , and the length is stored in signatureLength . This leads to the
same problem with allocating the buffer which was described for cryptExportKey ,
and the solution is again the same: You use cryptCreateSignature to tell you how
big to make the buffer. If you pass in a null pointer for signature , the function
will set signatureLength to the size of the resulting blob, but not do anything
else. You can then use code like:

cryptCreateSignature(NULL, &signatureLength, signatureKeyContext,
hashContext);

signature = malloc(signatureLength);
cryptCreateSignature(signature, &signatureLength,

signatureKeyContext, hashContext);

to create the signature blob. Note that due to encoding issues for some algorithms the
final exported blob may be one or two bytes smaller than the size which is initially
reported, since the true size can’t be determined until the signature is actually
generated. Alternatively, you can just allocate a reasonably sized block of memory
and use that to hold the signature. “Reasonably sized” means a few Kb, a 4K block is
plenty (a signature blob for a 1024-bit public key is only about 200 bytes long).

Now that you’ve created the signature, the other party needs to check it. This is done
using the cryptCheckSignature function and the public key or key certificate
corresponding to the private key used to create the signature (you can also pass in a
private key if you want, cryptCheckSignature will only use the public key
components, although it’s not clear why you’d be in possession of someone elses
private key). To perform the check using a public key context you’d use:

CRYPT_CONTEXT sigCheckContext, hashContext;

/* Create a hash context */
cryptCreateContext(&hashContext, CRYPT_ALGO_SHA);

/* Hash the data */
cryptEncrypt(hashContext, data, dataLength);
cryptEncrypt(hashContext, data, 0);

Querying a Signature Object 75

/* Check the signature using the signature blob */
cryptCheckSignature(signature, sigCheckContext, hashContext);
cryptDestroyContext(hashContext);

A signature check using a key certificate is similar, except that it uses a public key
certificate object rather than a public key context. The use of key certificates is
explained in “Certificate Management” on page 76.

If the en/decryption part of the signature create/check operation fails due to incorrect
public or private key parameters, the function will return CRYPT_ERROR_FAILED
to indicate that the operation failed. If the signature is corrupt and couldn’t be
recovered, the function will return CRYPT_ERROR_BADDATA. In general
CRYPT_ERROR_FAILED will be returned for incorrect public or private key
parameters and CRYPT_ERROR_BADDATA will be returned if the signature has
been corrupted. Finally, if the signature doesn’t match the hash context, the function
will return CRYPT_ERROR_SIGNATURE. You can treat all three of these as
“signature generation/check failed” unless you want to include special-case error
handling for them.

If the public key is stored in an encryption context with a certificate associated with it
or in a key certificate, there may be constraints on the key usage which are imposed
by the certificate. If the key can’t be used for the signature or signature check
operation, the function will return CRYPT_ERROR_PERMISSION to indicate that
the key isn’t valid for this operation, you can find out more about the exact nature of
the problem by reading the error-related attributes as explained in “Miscellaneous
Topics” on page 146.

Querying a Signature Object
Just as you can query exported key blobs, you can also query signature blobs using
cryptQueryObject , which is used to obtain information on the signature. You can
also use cryptQueryObject to obtain information on exported key blobs as explained
in “Exchanging Keys” on page 66.

The function takes as parameters the object you want to query, and a pointer to a
CRYPT_OBJECT_INFO structure which is described in “Data Structures” on page
173. The object type will be a CRYPT_OBJECT_SIGNATURE for a signature
object. If you were given an arbitrary object of an unknown type you’d use the
following code to handle it:

CRYPT_OBJECT_INFO cryptObjectInfo;

cryptQueryObject(object, &cryptObjectInfo);
if(cryptObjectInfo.objectType == CRYPT_OBJECT_SIGNATURE)

/* Check the signature */
else

/* Error */

Any CRYPT_OBJECT_INFO fields which aren’t relevant for this type of object are
set to null or zero as appropriate.

Once you’ve found out what type of object you have, you can use the other
information returned by cryptQueryObject to process the object. The information
which you need to obtain from the blob is the hash algorithm which was used to hash
the signed data, which is contained in the hashAlgo field. To hash a piece of data
before checking the signature on it you would use:

CRYPT_CONTEXT hashContext;

/* Create the hash context from the query info */
cryptCreateContext(&hashContext, cryptObjectInfo.hashAlgo);

/* Hash the data */
cryptEncrypt(hashContext, data, dataLength);
cryptEncrypt(hashContext, data, 0);

Signing Data76

Extended Signature Creation/Checking
The cryptCreateSignatureEx and cryptCheckSignatureEx functions described
above create and verify signatures in the cryptlib default format (which, for the
technically inclined, is the Cryptographic Message Syntax format with key identifiers
used to denote public keys). The default cryptlib format has been chosen to be
independent of the underlying key format, so that it works equally well with any key
type including raw keys, X.509 certificates, PGP keys, and any other key storage
format.

Alongside the default format, cryptlib supports the generation and checking of
signatures in other formats using cryptCreateSignatureEx and
cryptCheckSignatureEx. cryptCreateSignatureEx works like
cryptCreateSignature but takes two extra parameters, the first of which specifies the
format to use for the signature. The formats are:

Format Description

CRYPT_FORMAT_CMS
CRYPT_FORMAT_SMIME

This is an older variation of the
Cryptographic Message Syntax and is also
known as S/MIME version 2 or 3 and
PKCS #7. This format only allows public-
key-based export, and the public key must
be stored as an X.509 certificate.

CRYPT_FORMAT_CRYPTLIBThis is the default cryptlib format and can
be used with any type of key. When used
for public-key based key export, this
format is also known as a newer variation
of S/MIME version 3.

The second extra parameter required by cryptCreateSignatureEx depends on the
signature format being used. With CRYPT_FORMAT_CRYPTLIB this parameter
isn’t used and should be set to CRYPT_UNUSED. With CRYPT_FORMAT_CMS/
CRYPT_FORMAT_SMIME, this parameter specifies optional additional information
which is included with the signature. The only real difference between the
CRYPT_FORMAT_CMS and CRYPT_FORMAT_SMIME signature format is that
CRYPT_FORMAT_SMIME adds a few extra S/MIME-specific attributes which
aren’t added by CRYPT_FORMAT_CMS. This additional information includes
things like the type of data being signed (so that the signed content can’t be
interpreted the wrong way), the signing time (so that an old signed message can’t be
reused), and any other information which the signer might consider worth including.

The easiest way to handle this extra information is to let cryptlib add it for you. If
you set the parameter to CRYPT_USE_DEFAULT, cryptlib will generate and add the
extra information for you:

void *signature;
int signatureLength;

cryptCreateSignatureEx(NULL, &signatureLength, CRYPT_FORMAT_CMS,
signatureKeyContext, hashContext, CRYPT_USE_DEFAULT);

signature = malloc(signatureLength);
cryptCreateSignatureEx(signature, &signatureLength, CRYPT_FORMAT_CMS,

signatureKeyContext, hashContext, CRYPT_USE_DEFAULT);

If you need more precise control over the extra information, you can specify it
yourself in the form of a CRYPT_CERTTYPE_CMS_ATTRIBUTES certificate
object, which is described in more detail in “Further Certificate Objects” on page 124.
By default cryptlib will include the default signature attributes
CRYPT_CERTINFO_CMS_SIGNINGTIME and CRYPT_CERTINFO_CMS_-
CONTENTYPE for you if you don’t specify it yourself, and for S/MIME signatures it
will also include CRYPT_CERTINFO_CMS_SMIMECAPABILITIES. You can
disable this automatic including with the cryptlib configuration option
CRYPT_OPTION_CMS_DEFAULTATTRIBUTES/CRYPT_OPTION_SMIME_-

Extended Signature Creation/Checking 77

DEFAULTATTRIBUTES as explained in “Miscellaneous Topics” on page 146, this
will simplify the signature somewhat and reduce its size and processing overhead:

CRYPT_CERTIFICATE signatureAttributes;
void *signature;
int signatureLength;

/* Create the signature attribute object */
cryptCreateCert(&signatureAttributes, CRYPT_CERTTYPE_CMS_ATTRIBUTES

);
/* ... */

/* Create the signature including the attributes as extra information
*/

cryptCreateSignatureEx(NULL, &signatureLength, CRYPT_FORMAT_CMS,
signatureKeyContext, hashContext, signatureAttributes);

signature = malloc(signatureLength);
cryptCreateSignatureEx(signature, &signatureLength, CRYPT_FORMAT_CMS,

signatureKeyContext, hashContext, signatureAttributes);
cryptDestroyCert(signatureAttributes);

In general if you’re sending signed data to a recipient who is also using cryptlib-
based software, you should use the default cryptlib signature format which is more
flexible in terms of key handling and far more space-efficient (CMS/SMIME
signatures are typically ten times the size of the default cryptlib format while
providing little extra information, and have a much higher processing overhead than
cryptlib signatures).

Extended signature checking follows the same pattern as extended signature
generation, with the extra parameter to the function being a pointer to the location
which receives the additional information included with the signature. With the
CRYPT_FORMAT_CRYPTLIB format type, there’s no extra information present
and the parameter should be set to null. With CRYPT_FORMAT_CMS/
CRYPT_FORMAT_SMIME, you can also set the parameter to null if you’re not
interested in the additional information, and cryptlib will discard it after using it as
part of the signature checking process (this is required even if the information isn’t
used). If you are interested in the additional information, you should set the
parameter to a pointer to a CRYPT_CERTIFICATE value which cryplib will create
for you and populate with the additional signature information. If the signature check
succeeds, you can work with the resulting CRYPT_CERTIFICATE as you would
with any certificate object:

CRYPT_CERTIFICATE signatureAttributes;
int status;

status = cryptCheckSignatureEx(signature, sigCheckCertificate,
hashContext, &signatureAttributes);

if(cryptStatusOK(status))
{
/* Work with extra signature information in signatureAttributes */
/* ... */

/* Clean up */
cryptDestroyCert(signatureAttributes);
}

Certificate Management78

Certificate Management
Although an encryption context can be used to store basic key components, it’s not
capable of storing any additional information such as the key owners name, usage
restrictions, and key validity information. This type of information is stored in a key
certificate, which is encoded according to the X.509 standard and sundry
amendments, corrections, extensions, profiles, and related standards. A certificate
consists of the encoded public key, information to identify the owner of the
certificate, other data such as usage and validity information, and a digital signature
which binds all this information to the key.

There are a number of different types of certificate objects, including actual
certificates, certification requests, certificate revocation lists (CRL’s), certification
authority (CA) certificates, certificate chains, attribute certificates, and others. For
simplicity the following text refers to all of these items using the general term
“certificate”. Only where a specific type of item such as a CA certificate or a
certification request is required will the actual name be used.

cryptlib stores all of these items in a generic CRYPT_CERTIFICATE container
object into which you can insert various items such as identification information and
key attributes, as well as public-key encryption contexts or other certificate objects.
Once everything has been added, you can fix the state of the certificate by signing it,
after which you can’t change it except by starting again with a fresh certificate object.

Overview of Certificates
Public key certificates are objects which bind information about the owner of a public
key to the key itself. The binding is achieved by having the information in the
certificate signed by a certification authority (CA) which protects the integrity of the
certificate information and allows it to be distributed over untrusted channels and
stored on untrusted systems.

You can request a certificate from a CA with a certification request, which encodes a
public key and identification information and binds them together for processing by
the CA. The CA responds to a certificate request with a signed certificate.

You can also cancel (or revoke) an existing certificate with a certificate revocation
(traditionally referred to as a certificate revocation list or CRL), although proper
CRL’s were never terribly practical, often have little support in actual
implementations, and will probably be superseded with online validation techniques
ranging from phonecalls through to full online validation protocols.

Certificates and Standards Compliance
The key certificates used by most software today were originally specified in the
CCITT (now ITU) X.509 standard, and have been extended via assorted ISO, ANSI,
ITU, IETF, and national standards (generally referred to as “X.509 profiles”), along
with sundry amendments, meeting notes, draft standards, committee drafts, working
drafts, and other work-in-progress documents. X.509 version 1 (X.509v1) defined
the original, very basic certificate format, the latest version of the standard is version
3 (X.509v3) which defines all manner of extensions and additions and is still in the
process of being finalised and profiled. Compliance with the various certificate
standards varies greatly. Most implementations manage to get the decade-old
X.509v1 more or less correct, and cryptlib includes special code to allow it to process
many incorrectly-formatted X.509v1-style certificates as well as all correctly
formatted ones. However compliance with X.509v3 profiles is extremely patchy.
Because of this, it is strongly recommended that you test the certificates you plan to
produce with cryptlib against any other software you want to interoperate with.
Although cryptlib produces certificates which comply fully with X.509v3 and related
standards and recommendations, many other programs (including several common

The Certification Process 79

web browsers and servers) either can’t process these certificates at all or will process
them incorrectly.

To bypass this problem, cryptlib provides the ability to selectively disable various
levels of X.509v3 compliance in order to produce certificates which can be loaded by
other software. To check interoperability, start with a full X.509v3 certificate and
then gradually disable more and more X.509v3 features until the certificate can be
processed by the other software. Note that even if the other software loads your
certificate, it may not process the information contained in it correctly, so you should
verify that it’s handling it in the way you expect it to.

If you need to interoperate with a variety of other programs, you may need to find the
lowest common denominator which all programs can accept, which is usually
X.509v1, sometimes with one or two X.509v3 extensions. Alternatively, you can
issue different certificates for different software, a technique which is currently used
by some CA’s which have a different certificate issuing process for Netscape, MSIE,
and everything else.

Much current certificate management software produces an amazing collection of
garbled, invalid, and just plain broken certificates which will be rejected by cryptlib
in its default mode of operation. As with certificate generation, it’s possible to
disable various portions of the certificate checking code in order to allow these
certificates to be processed. If a certificate fails to load you can try disabling more
and more certificate checking in cryptlib until the certificate can be loaded, although
disabling these checks will also void any guarantees about correct certificate
handling.

To provide maximum compatibility with existing implementations, you should set the
configuration options CRYPT_OPTION_CERT_ENCODE_VALIDITYNE STING to
true and CRYPT_OPTION_CERT_ENCODECRITICAL, CRYPT_OPTION_-
CERT_DECODECRITICAL CRYPT_OPTION_CERT_DECODE_-
VALIDITYNESTING, CRYPT_OPTION_CERT_CHECKENCODING, and
CRYPT_OPTION_CERT_FIXSTRINGS to false. To provide maximum compliance
with the standards which cover certificates, you should set the configuration options
CRYPT_OPTION_CERT_ENCODE_VALIDITYNESTING, CRYPT_OPTION_-
CERT_DECODE_VALIDITYNESTING, CRYPT_OPTION_CERT_-
ENCODECRITICAL, CRYPT_OPTION_CERT_DECODECRITICAL,
CRYPT_OPTION_CERT_CHECKENCODING, and CRYPT_OPTION_CERT_-
FIXSTRINGS to true.

Finally, implementations are free to stuff anything they feel like into certain areas of
the certificate. cryptlib goes to some lengths to take this into account and process the
certificate no matter what data it finds in there, however sometimes it may find
something that it can’t handle. If you require support for special certificate
components (either to generate them or to process them), please contact the cryptlib
developers. Support for reasonably normal certificate extensions and peculiarities
can usually be added within a fortnight of receiving the requirements for the
implementation.

The Certification Process
Obtaining a public key certificate involves generating a public key, creating a
certificate request from it, transmitting it to a CA who converts the certification
request into a certificate and signs it, and finally retrieving the completed certificate
from the CA:

Certificate Management80

User CA

Generate certification
request

� Convert certification
request to certificate

�

Verify new certificate ⇐ Add (optional) attributes
and sign certificate

These steps can be broken down into a number of individual operations. The first
step, generating a certification request, involves the following:

generate public/private key pair;
create certificate object;
add public key to certificate object;
add identification information to certificate object;
sign certificate object with private key;
export certification request for transmission to CA;
destroy certificate object;

The CA receives the certification request and turns it into a certificate as follows:

import certification request;
check validity and signature on certification request;
create certificate object;
add certification request to certificate object;
add any extra information (eg key usage constraints) to certificate

object;
sign certificate object;
export certificate for transmission to user;
destroy certificate objects;

Finally, the user receives the signed certificate from the CA and processes it as
required, typically writing it to a public key keyset or updating a private key keyset:

import certificate;
check validity and signature on certificate;
write certificate to keyset;
destroy certificate object;

The details on performing these operations are covered in the following sections.

Creating/Destroying Certificate Objects
Certificates are accessed as certificate objects which work in the same general
manner as the other container objects used by cryptlib. You create the certificate
object with cryptCreateCert , specifying the type of certificate you want to create.
Once you’ve finished with the object, you use cryptDestroyCert to destroy it:

CRYPT_CERTIFICATE cryptCert;

cryptCreateCert(&cryptCert, certificateType);

/* Work with the certificate */

cryptDestroyCert(cryptCert);

The available certificate types are:

Certificate Type Description

CRYPT_CERTTYPE_ATTRCERT Attribute certificate.

CRYPT_CERTTYPE_CERTCHAIN Certificate chain

CRYPT_CERTTYPE_CERTIFICATE Certificate or CA certificate.

CRYPT_CERTTYPE_CERTREQUESTCertification request

CRYPT_CERTTYPE_CRL Certificate revocation.

Working with Certificate Attributes 81

Note that the CRYPT_CERTIFICATE is passed to cryptCreateCert by reference, as
the function modifies it when it creates the certificate object. In all other routines,
CRYPT_CERTIFICATE is passed by value.

You can also create a certificate object by reading a certificate from a public key
database, as explained in “Key Databases” on page 40. Unlike cryptCreateCert , this
will read a complete certificate into a certificate object, while cryptCreateCert only
creates a certificate template which still needs various details such as the public key
and key owners name filled in.

A third way to create a certificate object is to import an encoded certificate using
cryptImportCert , which is explained in more detail below. Like the public key read
functions, this imports a complete certificate into a certificate object.

Working with Certificate Attributes
Certificate objects contain a number of basic attributes and an optional collection of
often complex data structures and components. cryptlib provides a variety of
mechanisms for working with them. The attributes in a certificate object can be
broken up into three basic types:

1. Basic certificate attributes such as the public key and timestamp/validity
information.

2. Identification information such as the certificate subject and issuer name.

3. Certificate extensions which can contain almost anything. These are covered
in “Certificate Extensions” on page 97.

Although cryptlib provides the ability to manipulate all of these attributes, in practice
you only need to handle a small subset of them yourself. The rest will be set to
sensible defaults by cryptlib.

Apart from this, certificate attributes are handled in the standard way described in
“Working with Object Attributes” on page 17.

Certificate Structures
Certificates, attribute certificates, certification requests, and CRL’s have their own,
often complex, structures which are encoded and decoded for you by cryptlib.
Although cryptlib provides the ability to control the details of each certificate object
in great detail if you require this, in practice you should leave the certificate
management to cryptlib. If you don’t fill in the non-mandatory fields, cryptlib will fill
them in for you with default values when you sign the certificate object.

Certificate chains are composite objects which contain within them one or more
complete certificates. These are covered in more detail in “Certificate Chains” on
page 114.

Attribute Certificate Structure
An X.509 attribute certificate has the following structure:

Field Description

Version The version number defines the attribute certificate
version and is filled in automatically by cryptlib when
the certificate is signed.

Owner The owner identifies the owner of the attribute
certificate and is explained in more detail further on. If
you add a certificate request using
CRYPT_CERTINFO_CERTREQUEST or a certificate
using CRYPT_CERTINFO_USERCERTIFICATE,
this field will be filled in for you.

Certificate Management82

Field Description
This is a composite field which you must fill in
yourself (unless it has already been filled in from a
certification request or certificate).

Issuer The issuer name identifies the attribute certificate
signer (usually an authority, the attribute-certificate
version of a CA), and is filled in automatically by
cryptlib when the certificate is signed.

Signature The signature algorithm identifies the algorithm used to
sign the attribute certificate, and is filled in
automatically by cryptlib when the certificate is signed.

SerialNumber The serial number is unique for each attribute
certificate issued by an authority, and is filled in
automatically by cryptlib when the certificate is signed.
You can obtain the value of this field with
CRYPT_CERTINFO_SERIALNUMBER, but you
can’t set it. If you try to set it, cryptlib will return
CRYPT_ERROR_PERMISSION to indicate that you
don’t have permission to set this field. The serial
number is returned as a binary string and not as a
numeric value, since it is often 15-20 bytes long.

cryptlib doesn’t use strict sequential numbering for the
certificates it issues since this would make it very easy
for a third party to determine how many certificates a
CA is issuing at any time.

Validity The validity period defines the period of time over
which an attribute certificate is valid. CRYPT_-
CERTINFO_VALIDFROM specifies the validity start
period, and CRYPT_CERTINFO_VALIDTO specifies
the validity end period, expressed in local time and
using the standard ANSI/ISO C seconds since 1970
format. This is a binary data field, with the data being
the timestamp value (in C and C++ this is a time_t ,
usually a signed long integer). If you don’t set these,
cryptlib will set them for you when the attribute
certificate is signed so that the certificate validity starts
on the day of issue and ends one year later. You can
change the default validity period using the cryptlib
configuration option CRYPT_OPTION_-
CERT_VALIDITY as explained in “Miscellaneous
Topics” on page 146.

By default, cryptlib will enforce validity period nesting
when generating an attribute certificate, so that the
validity period of an attribute certificate will be
constrained to lie within the validity period of the
authority certificate which signed it. If this isn’t done,
some software will treat the certificate as being invalid,
or will regard it as having expired once the authority
certificate which signed it expires. You can change the
enforcement of validity period nesting using the
cryptlib configuration options CRYPT_-
OPTION_CERT_ENCODE_VALIDITYNESTING (to
control the creation of certificates with nested validity)
and CRYPT_OPTION_CERT_DECODE_-
VALIDITYNESTING (to control the processing of
certificates with nested validity) as explained in

Certificate Structures 83

Field Description
“Miscellaneous Topics” on page 146.

Attributes The attributes field contains a collection of attributes
for the certificate owner. Since no standard attributes
had been defined at the time of the last X.509 attribute
certificate committee draft, cryptlib doesn’t currently
support attributes in this field. When attributes are
defined, cryptlib will support them.

IssuerUniqueID The issuer unique ID was added in X.509v2, but its use
has been discontinued. If this string field is present in
existing attribute certificates you can obtain its value
using CRYPT_CERTINFO_ISSUERUNIQUEID, but
you can’t set it. If you try to set it, cryptlib will return
CRYPT_ERROR_PERMISSION to indicate that you
have no permission to set this field.

Extensions Certificate extensions allow almost anything to be
added to an attribute certificate and are covered in more
detail in “Certificate Extensions” on page 97.

Certificate Structure
An X.509 certificate has the following structure:

Field Description

Version The version number defines the certificate version and
is filled in automatically by cryptlib when the
certificate is signed. It is used mainly for marketing
purposes to claim that software is X.509v3 compliant
(even when it isn’t).

SerialNumber The serial number is unique for each certificate issued
by a CA, and is filled in automatically by cryptlib when
the certificate is signed. You can obtain the value of
this field with CRYPT_CERTINFO_-
SERIALNUMBER, but you can’t set it. If you try to
set it, cryptlib will return CRYPT_ERROR_-
PERMISSION to indicate that you don’t have
permission to set this field. The serial number is
returned as a binary string and not as a numeric value,
since it is often 15-20 bytes long.

cryptlib doesn’t use strict sequential numbering for the
certificates it issues since this would make it very easy
for a third party to determine how many certificates a
CA is issuing at any time.

SignatureAlgorithm The signature algorithm identifies the algorithm used to
sign the certificate, and is filled in automatically by
cryptlib when the certificate is signed.

IssuerName The issuer name identifies the certificate signer
(usually a CA), and is filled in automatically by
cryptlib when the certificate is signed.

Validity The validity period defines the period of time over
which a certificate is valid. CRYPT_CERTINFO_-
VALIDFROM specifies the validity start period, and
CRYPT_CERTINFO_VALIDTO specifies the validity
end period, expressed in local time and using the
standard ANSI/ISO C seconds since 1970 format. This
is a binary data field, with the data being the timestamp

Certificate Management84

Field Description
value (in C and C++ this is a time_t , usually a signed
long integer). If you don’t set these, cryptlib will set
them for you when the certificate is signed so that the
certificate validity starts on the day of issue and ends
one year later. You can change the default validity
period using the cryptlib configuration option
CRYPT_OPTION_CERT_VALIDITY as explained in
“Miscellaneous Topics” on page 146.

By default, cryptlib will enforce validity period nesting
when generating a certificate, so that the validity period
of a certificate will be constrained to lie within the
validity period of the CA certificate which signed it. If
this isn’t done, some software will treat the certificate
as being invalid, or will regard it as having expired
once the CA certificate which signed it expires. You
can change the enforcement of validity period nesting
using the cryptlib configuration options
CRYPT_OPTION_CERT_ENCODE_-
VALIDITYNESTING (to control the creation of
certificates with nested validity) and
CRYPT_OPTION_CERT_DECODE_-
VALIDITYNESTING (to control the processing of
certificates with nested validity) as explained in
“Miscellaneous Topics” on page 146.

SubjectName The subject name identifies the owner of the certificate
and is explained in more detail further on. If you add
the subject public key info from a certification request
using CRYPT_CERTINFO_CERTREQUEST, this
field will be filled in for you.

This is a composite field which you must fill in
yourself (unless it has already been filled in from a
certification request).

SubjectPublicKey-
Info

The subject public key info contains the public key for
this certificate. You can specify the public key with
CRYPT_CERTINFO_SUBJECTPUBLICKEYINFO,
and provide either an encryption context or a certificate
object which contains a public key. You can also add a
certification request with CRYPT_CERTINFO_-
CERTREQUEST, which fills in the subject public key
info, subject name, and possibly some certificate
extensions.

This is a numeric field which you must fill in yourself.

IssuerUniqueID
SubjectUniqueID

The issuer and subject unique ID were added in
X.509v2, but their use has been discontinued. If these
string fields are present in existing certificates you can
obtain their values using CRYPT_CERTINFO_-
ISSUERUNIQUEID and CRYPT_CERTINFO_-
SUBJECTUNIQUEID, but you can’t set them. If you
try to set them, cryptlib will return CRYPT_ERROR_-
PERMISSION to indicate that you have no permission
to set these fields.

Extensions Certificate extensions were added in X.509v3.
Extensions allow almost anything to be added to a
certificate and are covered in more detail in “Certificate
Extensions” on page 97.

Certificate Structures 85

Certification Request Structure
A PKCS #10 certification request has the following structure:

Field Description

Version The version number defines the certification request
version and is filled in automatically by cryptlib when
the request is signed.

SubjectName The subject name identifies the owner of the
certification request and is explained in more detail
further on.

This is a composite field which you must fill in
yourself.

SubjectPublicKey-
Info

The subject public key info contains the public key for
this certification request. You can specify the public
key with CRYPT_CERTINFO_-
SUBJECTPUBLICKEYINFO, and provide either an
encryption context or a certificate object which
contains a public key.

This is a composite field which you must fill in
yourself.

Extensions Extensions allow almost anything to be added to a
certification request and are covered in more detail in
“Certificate Extensions” on page 97.

PKCS #10 certification requests can have one of two encodings, the standard one
which is used by most implementations, and an alternative encoding which arises
from an error in the PKCS #10 specification (the default encoding encodes an empty
set of extensions as a zero-length sequence while the alternative encoding omits the
extensions field if none are present). Unfortunately there is no way to tell which of
the two encodings will be accepted by a CA, but most CA’s accept the form which is
used by cryptlib by default (cryptlib itself will accept either form). To enable the use
of the alternative encoding, you can use the cryptlib configuration option
CRYPT_OPTION_CERT_PKCS10ALT as explained in “Miscellaneous Topics” on
page 146.

cryptlib will also read Netscape SignedPublicKeyAndChallenge records, converting
the data in them into the equivalent certification request information so that the
resulting object appears as a standard certification request. Since the
SignedPublicKeyAndChallenge doesn’t include anything other than a public key, you
will need to manually add a subject name and any necessary extensions when you add
the certification request information to a certificate. In addition because the object
created from a SignedPublicKeyAndChallenge isn’t a genuine certification request
object, you can’t re-export it from the object as a certification request or save it to a
keyset.

CRL Structure
An X.509 CRL has the following structure:

Field Description

Version The version number defines the CRL version and is
filled in automatically by cryptlib when the CRL is
signed.

SignatureAlgorithmThe signature algorithm identifies the algorithm used to
sign the CRL, and is filled in automatically by cryptlib
when the CRL is signed.

Certificate Management86

Field Description
IssuerName The issuer name identifies the CRL signer, and is filled

in automatically by cryptlib when the CRL is signed.

ThisUpdate
NextUpdate

The update time specifies when the CRL was issued,
and the next update time specifies when the next CRL
will be issued. CRYPT_CERTINFO_THISUPDATE
specifies the current CRL issue time, and
CRYPT_CERTINFO_NEXTUPDATE specifies the
next CRL issue time, expressed in local time and using
the standard ANSI/ISO C seconds since 1970 format.
This is a binary data field, with the data being the
timestamp value (in C and C++ this is a time_t ,
usually a signed long integer). If you don’t set these,
cryptlib will set them for you when the CRL is signed
so that the issue time is the day of issue and the next
update time is 90 days later. You can change the
default update interval using the cryptlib configuration
option CRYPT_OPTION_CERT_-
UPDATEINTERVAL as explained in “Miscellaneous
Topics” on page 146.

UserCertificate The user certificate identifies the certificates which are
being revoked in this CRL. The certificates must be
ones which were issued using the CA certificate which
is being used to issue the CRL. If you try to revoke a
certificate which was issued using a different CA
certificate, cryptlib will return a CRYPT_ERROR_-
INVALID error when you add the certificate or sign
the CRL to indicate that the certificate can’t be revoked
using this CRL. You can specify the certificates to be
revoked with CRYPT_CERTINFO_-
USERCERTIFICATE.

This is a numeric field, and the only one which you
must fill in yourself.

RevocationDate The revocation date identifies the date on which a
certificate was revoked. You can specify the
revocation date with CRYPT_CERTINFO_-
REVOCATIONDATE, expressed in local time and
using the standard ANSI/ISO C seconds since 1970
format. This is a binary data field, with the data being
the timestamp value (in C and C++ this is a time_t ,
usually a signed long integer). If you don’t set it,
cryptlib will set it for you to the date on which the CRL
was signed.

The revocation date you specify applies to the last
certificate added to the list of revoked certificates. If
no certificates have been added yet, it will be used as a
default date which applies to all certificates for which
no revocation date is explicitly set.

Basic Certificate Management
With the information from the previous section, it’s now possible to start creating
basic certificate objects. To create a certification request, you would do the
following:

CRYPT_CERTIFICATE cryptCertRequest;
void *certRequest;
int certRequestLength;

Basic Certificate Management 87

/* Create a certification request and add the public key to it */
cryptCreateCert(cryptCertRequest, CRYPT_CERTTYPE_CERTREQUEST);
cryptSetAttribute(cryptCertRequest,

CRYPT_CERTINFO_SUBJECTPUBLICKEYINFO, pubKeyContext);

/* Add identification information */
/* ... */

/* Sign the certification request with the private key and export it
*/

cryptSignCert(cryptCertRequest, privKeyContext);
cryptExportCert(NULL, &certRequestLength,

CRYPT_CERTFORMAT_CERTIFICATE, cryptCertRequest);
certRequest = malloc(certRequestLength);
cryptExportCert(certRequest, &certRequestLength,

CRYPT_CERTFORMAT_CERTIFICATE, cryptCertRequest);

/* Destroy the certification request */
cryptDestroyCert(cryptCertRequest);

This simply takes a public key, adds some identification information to it (the details
of this will be covered later), signs it, and exports the encoded certification request
for transmission to a CA. Since cryptlib will only copy across the appropriate key
components, there’s no need to have a separate public and private key context, you
can add the same private key context which you’ll be using to sign the certification
request to supply the CRYPT_CERTINFO_SUBJECTPUBLICKEYINFO
information and cryptlib will use the appropriate data from it.

To process the certification request and convert it into a certificate, the CA does the
following:

CRYPT_CERTIFICATE cryptCert, cryptCertRequest;
void *cert;
int certLength;

/* Import the certification request and check its validity */
cryptImportCert(certRequest, &cryptCertRequest);
cryptCheckCert(cryptCertRequest, CRYPT_UNUSED);

/* Create a certificate and add the information from the certification
request to it */

cryptCreateCert(&cryptCert, CRYPT_CERTTYPE_CERTIFICATE);
cryptSetAttribute(cryptCert, CRYPT_CERTINFO_CERTREQUEST,

cryptCertRequest);

/* Sign the certificate with the CA’s private key and export it */
cryptSignCert(cryptCert, caPrivateKey);
cryptExportCert(NULL, &certLength, CRYPT_CERTFORMAT_CERTIFICATE,

cryptCert);
cert = malloc(certLength);
cryptExportCert(cert, &certLength, CRYPT_CERTFORMAT_CERTIFICATE,

cryptCert);

/* Destroy the certificate and certification request */
cryptDestroyCert(cryptCert);
cryptDestroyCert(cryptCertRequest);

In this case the CA has put together a very minimal X.509v1 certificate which can be
processed by most software but which is rather limited in the amount of control
which the CA and end user has over the certificate, since no constraint or usage
control information has been added to the certificate. By default cryptlib actually
adds the necessary fields for a full X.509v3 certificate, but this won’t contain all the
information which would be available if the CA explicitly creates an X.509v3
certificate. Creating full X.509v3 certificates involves the use of certificate
extensions and is covered in more detail later.

To check the signed certificate returned from the CA and add it to a keyset, the user
does the following:

CRYPT_CERTIFICATE cryptCert;

/* Import the certificate and check its validity */
cryptImportCert(cert, &cryptCert);

Certificate Management88

cryptCheckCert(cryptCert, caCertificate);

/* Add the certificate to a keyset */
/* ... */

/* Destroy the certificate */
cryptDestroyCert(cryptCert);

To obtain information about the key contained in a certificate you can read the
appropriate attributes just like an encryption context, for example
CRYPT_CTXINFO_ALGO will return the encryption/signature algorithm type,
CRYPT_CTXINFO_NAME_ALGO will return the algorithm name, and
CRYPT_CTXINFO_KEYSIZE will return the key size.

Certificate Identification Information
Traditionally, certificate objects have been identified by a construct called an X.500
Distinguished Name (DN). In ISO/ITU terminology, the DN defines a path through
an X.500 directory information tree (DIT) via a sequence of Relative Distinguished
Name (RDN) components which in turn consist of a set of one or more Attribute
Value Assertions (AVA’s) per RDN. The description then goes on in this manner for
another hundred-odd pages, and includes diagrams which are best understood when
held upside down in front of a mirror.

To keep things manageable, cryptlib goes to some lengths to hide the complexity
involved by handling the processing of DN’s for you. A cryptlib DN can contain the
following text string components:

Component Description

CountryName (C) The two-letter international country code (specified
in ISO 3166 in case you ever need to look it up).
Examples of country codes are ‘US’ and ‘NZ’. You
can specify the country with
CRYPT_CERTINFO_COUNTRYNAME.

This is a field which you must fill in.

Organization (O) The organisation for which the certificate will be
issued. Examples of organisations are ‘Microsoft
Corporation’ and ‘Verisign, Inc’. You can specify
the organisation with CRYPT_CERTINFO_-
ORGANIZATIONNAME.

OrganisationalUnit-
Name (OU)

The division of the organisation for which the
certificate will be issued. Examples of
organisational units are ‘Sales and Marketing’ and
‘Purchasing’. You can specify the organisational
unit with CRYPT_CERTINFO_-
ORGANIZATIONALUNITNAME.

StateOrProvinceName
(SP)

The state or province in which the certificate owner
is located. Examples of state or province names are
‘Utah’, ‘Steyrmark’, and ‘Puy de Dôme’. You can
specify the state or province with CRYPT_-
CERTINFO_STATEORPROVINCENAME.

LocalityName (L) The locality in which the certificate owner is
located. Examples of localities are ‘San Jose’,
‘Seydisfjördur’, and ‘Mönchengladbach’. You can
specify the localitywith CRYPT_CERTINFO_-
LOCALITYNAME.

CommonName (CN) The name of the certificate owner, which can be
either a person such as ‘John Doe’, a business role
such as ‘Accounts Manager’, or even an entity like

Certificate Identification Information 89

Component Description
‘Laser Printer #6’. You can specify the common
name with CRYPT_CERTINFO_-
COMMONNAME.

This is a field which you must fill in.

All DN components except the country name are limited to a maximum of 64
characters (this is a requirement of the X.500 standard which defines the certificate
format and use). cryptlib provides the CRYPT_MAX_TEXTSIZE constant for this
limit. Note that this defines the number of characters and not the number of bytes, so
that a Unicode string could be several times as long in bytes as it would be in
characters, depending on which data type the system uses to represent Unicode
characters.

The complete DN can be used for a personal key used for private purposes (for
example to perform home banking or send private email) or for a key used for
business purposes (for example to sign business agreements). The difference
between the two key types is that a personal key will identify someone as a private
individual, whereas a business key will identify someone terms of the organisation for
which they work.

A DN must always contain a country name and a common name, and should
generally also contain one or more of the other components. If a DN doesn’t contain
at least the two minimum components, cryptlib will return
CRYPT_ERROR_NOTINITED with an extended error indicating the missing
component when you try to sign the certificate object.

Some software generates certification requests (and certificates) with incorrectly
encoded DN’s. By default cryptlib will correct the encoding when it generates a
certificate from a certification request, however a subset of the software will check
that it receives back the same invalid encoding in the certificate which it generated in
the certification request, and reject the certificate with the correct encoding. To
disable the correction of the encoding, you can use the cryptlib configuration option
CRYPT_OPTION_CERT_FIXSTRINGS as explained in “Miscellaneous Topics” on
page 146.

Realising that DN’s are too complex and specialised to handle many types of current
certificate usage, more recent revisions of the X.509 standard were extended to
include a more generalised name format called a GeneralName, which is explained in
more detail in “Extended Certificate Identification Information” on page 88.

DN Structure for Business Use
For business use, the DN should include the country code, the organisation name, an
optional organisational unit name, and the common name. An example of a DN
structured for business use would be:

C = US
O = Cognitive Cybernetics Incorporated
OU = Research and Development
CN = Paul Johnson

This is a key which is used by an individual within an organisation. It might also
describe a role within the organisation, in this case a class of certificate issuer in a
CA:

C = DE
O = Individual Network Certification Authority
CN = Class 1 CA

It might even describe an entity with no direct organisational role:

C = AT
O = Erste Allgemeine Verunsicherung
CN = Mail Gateway

Certificate Management90

In this last case the certificate might be used by the mail gateway machine to
authenticate data transmitted through it.

DN Structure for Private Use
For private, non-business use, the DN should include the country code, an optional
state or province name, the locality name, and the common name. An example of a
DN structured for private use would be:

C = US
SP = California
L = El Cerrito
CN = Dave Taylor

Other DN Structures
It’s also possible to combine components of the above DN structures, for example if
an organisation has divisions in multiple states you might want to include the state or
province name component in the DN:

C = US
SP = Michigan
O = Last National Bank
CN = Personnel Manager

Another example would be:

C = US
L = Area 51
O = Hanger 18
OU = X.500 Standards Designers
CN = John Doe

Working with Distinguished Names
Now that the details of DN’s have been covered, you can use them to add
identification information to certification requests and certificates. For example to
add the business DN shown earlier to a certification request you would use:

CRYPT_CERTIFICATE cryptCertRequest;

/* Create certification request and add other components */
/* ... */

/* Add identification information */
cryptSetAttributeString(cryptCertRequest, CRYPT_CERTINFO_COUNTRYNAME,

"US", 2);
cryptSetAttributeString(cryptCertRequest,

CRYPT_CERTINFO_ORGANIZATIONNAME, "Cognitive Cybernetics
Incorporated", 34);

cryptSetAttributeString(cryptCertRequest,
CRYPT_CERTINFO_ORGANIZATIONALUNITNAME, "Research and Development",
24);

cryptSetAttributeString(cryptCertRequest, CRYPT_CERTINFO_COMMONNAME,
"Paul Johnson", 12);

/* Sign certification request and transmit to CA */
/* ... */

The same process applies for adding other types of identification information to a
certification request or certificates. Note that cryptlib sorts the DN components into
the correct order when it creates the certification request or certificate, so there’s no
need to specify them in strict order as in the above code.

Extended Certificate Identification Information
In the early to mid 1990’s when it became clear that the Internet was going to be the
driving force behind certificate technology, X.509 was amended to allow a more

Extended Certificate Identification Information 91

general-purpose type of identification than the complex and specialised DN. This
new form was called the GeneralName, since it provided far more flexibility than the
original DN. A GeneralName can contain an email address, a URL, an IP address, an
alternative DN which doesn’t follow the strict rules for the main certificate DN (it
could for example contain a postal or street address), less useful components like
X.400 and EDI addressing information, and even user-defined information which
might be used in a certificate, for example medical patient, taxpayer, or social
security ID’s.

As with DN’s, cryptlib goes to some lengths to hide the complexity involved in
handling GeneralNames (recall the previous technical description of a DN, and then
consider that this constitutes only a small portion of the entire GeneralName). Like a
DN, a GeneralName can contain a number of components. Unless otherwise noted,
the components are all text strings.

Component Description

DirectoryName A DN which can contain supplementary
information which doesn’t fit easily into the main
certificate DN. You can specify this value with
CRYPT_CERTINFO_DIRECTORYNAME.

DNSName An Internet hosts’ fully-qualified domain name.
You can specify this value with
CRYPT_CERTINFO_DNSNAME.

EDIPartyName.Name-
Assigner

EDIPartyName.Party-
Name

An EDI assigner-and-value pair with the EDI name
assigner specified by CRYPT_CERTINFO_-
EDIPARTYNAME_NAMEASSIGNER and the
party name specified by CRYPT_CERTINFO_-
EDIPARTYNAME_PARTYNAME.

IPAddress An IP address as per RFC 791, containing a 4-byte
binary string in network byte order. You can
specify this value with CRYPT_CERTINFO_-
IPADDRESS.

OtherName.TypeID
OtherName.Value

A user-defined type-and-value pair with the type
specified by CRYPT_CERTINFO_-
OTHERNAME_TYPEID and the value specified
by CRYPT_CERTINFO_OTHERNAME_VALUE.
The type is an ISO object identifier and the
corresponding value is a binary string which can
contain anything, identified by the object identifier
(if you know what this is then you should also know
how to obtain one).

RegisteredID An object identifier (again, if you know what this is
then you should know how to obtain one). You can
specify this value with CRYPT_CERTINFO_-
REGISTEREDID.

RFC822Name An email address. You can specify this value with
CRYPT_CERTINFO_RFC822NAME. For
compatibility with the older (obsolete) PKCS #9
emailAddress attribute, cryptlib will also accept
CRYPT_CERTINFO_EMAIL to specify this field.

UniformResource-
Identifier

A URL for either FTP, HTTP, or LDAP access as
per RFC 1738. You can specify this value with
CRYPT_CERTINFO_-
UNIFORMRESOURCEIDENTIFIER.

Of the above GeneralName components, the most useful ones are the RFC822Name
(to specify an email address), the DNSName (to specify a server address), and the

Certificate Management92

UniformResourceIdentifier (to specify a home page or FTP directory). Somewhat
less useful is the DirectoryName, which can specify additional information which
doesn’t fit easily into the main certificate DN. The other components should be
avoided unless you have a good reason to require them (that is, don’t use them just
because they’re there).

Working with GeneralNames
Now that the details of GeneralNames have been covered, you can use them to add
additional identification information to certificate requests and certificates. For
example to add an email address and home page URL to the certification request
shown earlier you would use:

CRYPT_CERTIFICATE cryptCertRequest;

/* Create certification request and add other components */
/* ... */

/* Add identification information */
/* ... */

/* Add additional identification information */
cryptSetAttributeString(cryptCertRequest, CRYPT_CERTINFO_RFC822NAME,

"paul@cci.com", 12);
cryptSetAttributeString(cryptCertRequest,

CRYPT_CERTINFO_UNIFORMRESOURCEIDENTIFIER,
"http://www.cci.com/~paul", 23);

/* Sign certification request and transmit to CA */
/* ... */

Although GeneralNames are commonly used to identify a certificates owner just like
a DN, they are in fact a certificate extension rather than a basic attribute, and are
covered in more detail in “Certificate Extensions” on page 97.

Certificate Fingerprints
Certificates are sometimes identified through “fingerprints” which constitute either an
MD5 or SHA-1 hash of the certificate data (the most common form is an MD5 hash).
You can obtain a certificates fingerprint by reading its CRYPT_CERTINFO_-
FINGERPRINT attribute, which yields the default (MD5) fingerprint for the
certificate. You can also explicitly query a particular fingerprint type with CRYPT_-
CERTINFO_FINGERPRINT_MD5 and CRYPT_CERTINFO_FINGERPRINT_-
SHA:

unsigned char fingerprint[CRYPT_MAX_HASHSIZE]
int fingerprintSize;

cryptGetAttributeString(certificate, CRYPT_CERTINFO_FINGERPRINT,
&fingerprint, &fingerprintSize);

This will return the certificate fingerprint.

Importing/Exporting Certificates
If you have an encoded certificate which was obtained elsewhere, you can import it
into a certificate object using cryptImportCert . There are more than a dozen mostly
incompatible formats for communicating certificates, of which cryptlib will handle all
the generally useful and known ones. This includes straight binary certification
requests, certificates, attribute certificates, and CRL’s (usually stored with a .der file
extension when they are saved to disk), PKCS #7 certificate chains, and Netscape
certificate sequences. Certificates can also be protected with base64 armouring and
BEGIN/END CERTIFICATE delimiters, which is the format used by some web
browsers and other applications. When transferred via HTTP using the Netscape-
specific format, certificates, certificate chains, and Netscape certificate sequences are
identified with have the MIME content types application/x-x509-user-
cert , application/x-x509-ca-cert , and application/x-x509-

Importing/Exporting Certificates 93

email-cert , depending on the certificate type (cryptlib doesn’t use the MIME
content type since the certificate itself provides a far more reliable indication of its
intended use than the easily-altered MIME content type).. Portions of certificate
requests can also be communicated as Netscape SignedPublicKeyAndChallenge
objects, which are imported by cryptlib as incomplete certification requests. Finally,
certification requests and certificate chains can be encoded with the MIME / S/MIME
content types application/pkcs-signed-data , application/x-pkcs-
signed-data , application/pkcs-certs-only , application/x-
pkcs-certs-only , application/pkcs10 , or application/x-pkcs10 .
These are usually stored with a .p7c extension (for pure certificate chains), a .p7s
extension (for signatures containing a certificate chain), or a .p10 extension (for
certification requests) when they are saved to disk.

cryptlib will import any of the previously described certificate formats if they are
encoded in this manner. To import a certificate object you would use:

CRYPT_CERTIFICATE cryptCert;

/* Import the certificate object from the encoded certificate */
cryptImportCert(certificate, &cryptCert);

Note that the CRYPT_CERTIFICATE is passed to cryptImportCert by reference, as
the function modifies it when it creates the certificate object.

Many certificates produced by current software have incorrect or invalid encodings,
and cryptImportCert will reject them with a CRYPT_ERROR_BADDATA error.
You can disable the checking of encoding validity by setting the cryptlib
configuration option CRYPT_OPTION_CERT_CHECKENCODING to false, which
will often allow the certificate to be imported (cryptlib goes to a great deal of effort to
try to handle incorrectly encoded certificates). However the correct processing of
certificates which require disabling of validity checking in order to be handled cannot
be guaranteed (in other words disabling this check voids your warranty).

Some certificate objects may contain unrecognised critical extensions (certificate
extensions are covered in “Certificate Extensions” on page 97) which require that the
certificate be rejected by cryptlib. If a certificate contains an unrecognised critical
extension, cryptlib will return a CRYPT_ERROR_PERMISSION error to indicate
that you have no permission to use this object. Since the use of critical extensions
can lead to logical consistency problems in some instances, cryptlib provides the
ability to disable the rejection of these extensions with the cryptlib option
CRYPT_OPTION_CERT_DECODE_CRITICAL as explained in “Miscellaneous
Topics” on page 146. This option affects the ability to rely on certificate attributes,
so you should only use it if you’re familiar with the implications and intended uses of
critical extensions.

All the parameters and information needed to create the certificate object are a part of
the certificate, and cryptImportCert takes care of initialising the certificate object
and setting up the attributes and information inside it. The act of importing a
certificate simply decodes the information and initialises a certificate object, it
doesn’t check the signature on the certificate. To check the certificates signature you
need to use cryptCheckCert , which is explained further on.

There may be instances in which you’re not exactly certain of the type of certificate
object you have imported (for example importing a file with a .der extension could
create a certificate request, a certificate, an attribute certificate, or a certificate chain
object depending on the file contents). In order to determine the exact type of the
object, you can read its CRYPT_CERTINFO_CERTTYPE attribute:

CRYPT_CERTTYPE_TYPE certType;

cryptGetAttribute(certificate, CRYPT_CERTINFO_CERTTYPE, &certType);

This will return the type of the imported object.

You can export a signed certificate from a certificate object using cryptExportCert :

CRYPT_CERTIFICATE cryptCert;

Certificate Management94

void *certificate;
int certificateLength

/* Allocate memory for the encoded certificate */
certificate = malloc(...);

/* Export the encoded certificate from the certificate object */
cryptExportCert(certificate, &certificateLength, certFormatType,

cryptCert);

cryptlib will export certificates in any of the formats in which it can import them.
The available certFormat types are:

Format Type Description

CRYPT_CERTFORMAT_-
CERTCHAIN

A certificate encoded as a PKCS #7
certificate chain.

CRYPT_CERTFORMAT_-
CERTIFICATE

A certification request, certificate, or CRL in
binary data format. The certificate object is
encoded according to the ASN.1
distinguished encoding rules. This is the
normal certificate encoding format.

CRYPT_CERTFORMAT_-
SMIME_CERTIFICATE

As CRYPT_CERTFORMAT_-
CERTIFICATE but with MIME / S/MIME
encoding of the binary data. This format is
only usable with certification requests and
certificate chains as the encoding for the
other certificate object types isn’t defined.

CRYPT_CERTFORMAT_-
TEXT_CERTCHAIN

As CRYPT_CERTFORMAT_CERTCHAIN
but with base64 armouring of the binary
data.

CRYPT_CERTFORMAT_-
TEXT_CERTIFICATE

As CRYPT_CERTFORMAT_-
CERTIFICATE but with base64 armouring
of the binary data.

If the object you are exporting is a complete certificate chain rather than an individual
certificate then these options work somewhat differently. The details of exporting
certificate chains are covered in “Certificate Chains” on page 114.

The resulting encoded certificate is placed in the memory buffer pointed to by
certificate , and the length is stored in certificateLength . This leads to a
small problem: How do you know how big to make the buffer? The answer is to use
cryptExportCert to tell you. If you pass in a null pointer for certificate , the
function will set certificateLength to the size of the resulting encoded
certificate, but not do anything else. You can then use code like:

cryptExportCert(NULL, &certificateLength, certFormatType, cryptCert
);

certificate = malloc(certificateLength);
cryptExportCert(certificate, &certificateLength, certFormatType,

cryptCert);

to create the encoded certificate.

Alternatively, you can just reserve a reasonably sized block of memory and use that
to hold the encoded certificate. “Reasonably sized” means a few Kb, a 4K block is
plenty (a certificate for a 1024-bit key without certificate extensions is typically about
700 bytes long if encoded using any of the binary formats, or 900 bytes long if
encoded using any of the text formats).

If the certificate is one which you’ve created yourself rather than importing it from an
external source, you need to add various data items to the certificate and then sign it
before you can export it. If you try to export an incompletely prepared certificate
such as a certificate in which some required fields haven’t been filled in or one which
hasn’t been signed, cryptExportCert will return the error CRYPT_ERROR_-

Signing/Verifying Certificates 95

NOTINITED to tell you that the certificate information hasn’t been completely set
up.

Signing/Verifying Certificates
Once a certificate object contains all the information you want to add to it, you need
to sign it in order to transform it into its final state in which the data in it can be
written to a keyset (if the objects final state is a key certificate or CA certificate) or
exported from the object. Before you sign the certificate, the information within it
exists only in a very generic and indeterminate state. After signing it, the information
is turned into a fixed certificate, CA certificate, certification request, or CRL, and no
further changes can be made to it.

You can sign the information in a certificate object with cryptSignCert:

CRYPT_CONTEXT privateKeyContext;

/* Sign the certificate object */
cryptSignCert(cryptCert, privateKeyContext);

There are some restrictions on the types of keys which can be used to sign certificate
objects. These restrictions are imposed by the way in which certificates and
certificate-related items are encoded, and are as follows:

Certificate
Type

Can be Signed By

Attribute
certificate

Private key associated with an authority certificate.

Certificate Private key associated with a CA certificate. This can also
be a self-signed certificate, but a lot of software will then
decide that the resulting certificate is a CA certificate even
though it isn’t.

CA certificate Private key associated with a CA certificate (when one CA
certifies another) or the private key from which the
certificate being signed was created (when the CA certifies
itself).

Certification
request

Private key associated with the certification request.

Certificate
chain

Private key associated with a CA certificate.

CRL Private key associated with the CA certificate which was
used to issue the certificates which are being revoked.

Once a certificate item has been signed, it can no longer be modified or updated using
the usual certificate manipulation functions, and any attempt to update information in
it will return CRYPT_ERROR_PERMISSION to indicate that you have no
permission to modify the object. If you want to add or delete data to or from the
certificate item, you have to start again with a new certificate object. You can
determine whether a certificate item has been signed and can therefore no longer be
changed by reading its CRYPT_CERTINFO_IMMUTABLE attribute:

int isImmutable;

cryptGetAttribute(certificate, CRYPT_CERTINFO_IMMUTABLE, &isImmutable
);

If the result is set to true (a nonzero value), the certificate item can no longer be
changed.

If you’re creating a self-signed certificate signed by a raw private key with no
certificate information associated with it, you need to set the CRYPT_CERTINFO_-
SELFSIGNED attribute before you sign it otherwise cryptlib will flag the attempt to
sign using a non-certificate key as an error. Non-certificate private keys can only be

Certificate Management96

used to create self-signed certificates (if CRYPT_CERTINFO_SELFSIGNED is set)
or certification requests.

If the object being signed contains unrecognised extensions, cryptlib will not include
them in the signed object (signing extensions of unknown significance is a risky
practice for a CA, which in most jurisdictions would be held liable for any arising
problems). If you If you want to be able to sign unrecognised extensions, you can
enable this with the cryptlib configuration option CRYPT_OPTION_CERT_-
SIGNUNRECOGNISEDATTRIBUTES as explained in “Miscellaneous Topics” on
page 146.

By default cryptlib will create an X.509v3 certificate when you sign a certificate
object to create a certificate, automatically adding or updating the standard X.509v3
attributes for you — cryptlib will automatically adjust the certificate attributes to
ensure that any certificate you create contains appropriate and valid basic attributes.
If you want to create X.509v1 certificates or disable the automatic attribute handling
in order to obtain precise control over the basic attributes (for example to set the
attributes to nonstandard values), you can disable the automatic creation of X.509v3
certificates with the cryptlib configuration option CRYPT_OPTION_CERT_-
CREATEV3CERT as explained in “Miscellaneous Topics” on page 146.

As usual, you should experiment with the signature(s) you use to determine which
ones work with the software you need to interoperate with, and how the software
interprets the signatures you create.

You can verify the signature on a certificate object using cryptCheckCert and the
public key or key certificate corresponding to the private key which was used to sign
the certificate (you can also pass in a private key if you want, cryptCheckCert will
only use the public key components, although you shouldn’t really be in possession
of someone elses private key). To perform the check using a public key context
you’d use:

CRYPT_CONTEXT publicKeyContext;

/* Check the signature on the certificate object information using the
public key */

cryptCheckCert(cryptCert, publicKeyContext);

A signature check using a key certificate is similar, except that it uses a certificate
object rather than a public key context.

If the certificate object is self-signed, you can pass in CRYPT_UNUSED as the
second parameter and cryptCheckCert will use the key contained in the certificate
object to check its validity. You can determine whether a certificate object is self-
signed by reading its CRYPT_CERTINFO_SELFSIGNED attribute. Certification
requests are always self-signed, and certificate chains count as self-signed if they
contain a self-signed top-level certificate which can be used to recursively check the
rest of the chain. If the certificate object is a CA certificate which is signing itself (in
other words if it’s a self-signed cert), you can also pass the certificate as the second
parameter in place of CRYPT_UNUSED, this has the same effect since the certificate
is both the signed and signing object.

If the certificate is invalid (for example because it has expired or because some
certificate usage constraint hasn’t been met), cryptlib will return CRYPT_ERROR_-
INVALID to indicate that the certificate isn’t valid. This value is returned regardless
of whether the signature check succeeds or fails. You can find out the exact nature of
the problem by reading the extended error attributes as explained further on.

If the signature create/check operation fails due to incorrect public or private key
parameters, the function will return CRYPT_ERROR_FAILED to indicate that the
operation failed. If the signature on the certificate object is corrupt and couldn’t be
processed, the function will return CRYPT_ERROR_BADDATA. In general
CRYPT_ERROR_FAILED will be returned for incorrect public or private key
parameters and CRYPT_ERROR_BADDATA will be returned if the signature has
been corrupted. Finally, if the certificate data has been changed and the signature
invalidated, the function will return CRYPT_ERROR_SIGNATURE. You can treat

Certificate Trust Management 97

all three of these as “signature generation/check failed” unless you want to include
special-case error handling for them.

If the signing/signature check key is stored in an encryption context with a certificate
associated with it or in a key certificate, there may be constraints on the key usage
which are imposed by the certificate. If the key can’t be used for the signature or
signature check operation, the function will return CRYPT_ERROR_INVALID to
indicate that the key isn’t valid for this operation. You can find out more about the
exact nature of the problem by reading the extended error attributes as explained
further on.

Certificate Trust Management
In order to provide extended control over certificate usage, cryptlib allows you to
both further restrict the usage given in the certificates CRYPT_CERTINFO_-
KEYUSAGE attribute and to specify whether a given certificate should be implicitly
trusted, avoiding the requirement to process a (potentially large) chain of certificates
in order to determine the certificates validity.

Controlling Certificate Usage
You can control the way a certificate can be used by setting its CRYPT_-
CERTINFO_TRUSTED_USAGE attribute, which provides extended control over the
usage types which a certificate is trusted for. This attribute works by further
restricting the usage specified by the CRYPT_CERTINFO_KEYUSAGE attribute,
acting as a mask for the standard key usage so that a given usage is only permitted if
it’s allowed by both the key usage and trusted usage attributes. If the trusted usage
attribute isn’t present (which is the default setting) then all usage types specified in
the key usage attribute are allowed.

For example assume a certificates key usage attribute is set to CRYPT_-
KEYUSAGE_DIGITALSIGNATURE and CRYPT_KEYUSAGE_-
KEYENCIPHERMENT. By setting the trusted usage attribute to CRYPT_-
KEYUSAGE_DIGITALSIGNATURE only, you can tell cryptlib that you only trust
the certificate to be used for signatures, even though the certificates standard usage
would also allow encryption. This means that you can control precisely how a
certificate is used at a level beyond that provided by the certificate itself.

Implicitly Trusted Certificates
To handle certificate validation trust issues, cryptlib has a built-in trust manager
which records whether a given CA’s or end users certificate is implicitly trusted.
When cryptlib gets to a trusted certificate during the certificate validation process (for
example as it’s validating the certificates in a certificate chain), it knows that it
doesn’t have to go any further in trying to get to an ultimately trusted certificate. If
you installed the default cryptlib certificates when you installed cryptlib itself then
you’ll have a collection of top-level certificates from the world’s largest CA’s already
present and marked as trusted by cryptlib, so that if cryptlib is asked to process a
certificate chain ending in one of these trusted CA certificates, the cryptlib trust
manager will determine that the top-level certificate is implicitly trusted and use it to
verify the lower-level certificates in the chain.

The trust manager provides a convenient mechanism for managing not only CA
certificates but also any certificates which you decide you can trust implicitly, for
example if you’ve obtained a certificate from a trusted source such as direct
communication with the owner or from a trusted referrer, you can mark the certificate
as trusted even if it doesn’t have a full chain of CA certificates in tow. This is a
natural certificate handling model in many situations (for example trading partners
with an existing trust relationship), and avoids the complexity and expense of using
an external CA to verify something which both parties know already. When scaled
up to thousands of users (and certificates), this can provide a considerable savings

Certificate Management98

both in terms of managing the certification process and in the cost of obtaining and
renewing huge numbers of certificates each year.

Working with Trust Settings
You can get and set a certificates trusted usage using CRYPT_CERTINFO_-
TRUSTED_USAGE, which takes as value the key usage(s) for which the certificate
is trusted. To mark a certificate as trusted only for encryption, you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_TRUSTED_USAGE,
CRYPT_KEYUSAGE_KEYENCIPHERMENT);

This setting will now be applied automatically to the certificates usage permissions,
so that even if its CRYPT_CERTINFO_KEYUSAGE attribute allowed signing and
encryption, the CRYPT_CERTINFO_TRUSTED_USAGE attribute would restrict
this to only allow encryption.

To remove any restrictions and allow all usages specified by CRYPT_CERTINFO_-
KEYUSAGE, delete the CRYPT_CERTINFO_TRUSTED_USAGE attribute, which
allows the full range of usage types which are present in CRYPT_CERTINFO_-
KEYUSAGE:

cryptDeleteAttribute(cryptCert, CRYPT_CERTINFO_TRUSTED_USAGE

You can get and set a certificates implicitly trusted status using the CRYPT_-
CERTINFO_TRUSTED_IMPLICIT attribute, which takes as value a boolean flag
which indicates whether the certificate is implicitly trusted or not. To mark a
certificate as trusted, you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_TRUSTED_IMPLICIT, 1);

To check whether a certificate is trusted you would use:

int isTrusted;

cryptGetAttribute(certificate, CRYPT_CERTINFO_TRUSTED_IMPLICIT,
&isTrusted);

If the result is set to true (a nonzero value) then the certificate is implicitly trusted by
cryptlib. In practice you won’t need to bother with this checking, since cryptlib will
do it for you when it verifies certificate chains.

The certificate trust settings are part of cryptlib’s configuration options, which are
explained in more detail in “Miscellaneous Topics” on page 146. Like all
configuration options, changes to the trust settings only remain in effect during the
current session with cryptlib unless you explicitly force them to be committed to
permanent storage by resetting the configuration changed flag. For example if you
change the trust settings for various certificates and want the new trust values to be
applied when you use cryptlib in the future, you would use code like:

/* Mark various certificates as trusted and one as untrusted */
cryptSetAttribute(certificate1, CRYPT_CERTINFO_TRUSTED_IMPLICIT, 1);
cryptSetAttribute(certificate2, CRYPT_CERTINFO_TRUSTED_IMPLICIT, 1);
cryptSetAttribute(certificate3, CRYPT_CERTINFO_TRUSTED_IMPLICIT, 1);
cryptSetAttribute(certificate4, CRYPT_CERTINFO_TRUSTED_IMPLICIT, 0);

/* Save the new settings to permanent storage */
cryptSetAttribute(CRYPT_UNUSED, CRYPT_OPTION_CONFIGCHANGED, FALSE);

Marking a certificate as untrusted doesn’t mean that it can never be trusted, but
merely that it’s actual trust status is currently unknown. If the untrusted certificate is
signed by a trusted CA certificate (possibly several levels up a certificate chain) then
the certificate will be regarded as trusted when cryptlib checks the certificate chain.
In practice an untrusted certificate is really a certificate whose precise trust level has
yet to be determined rather than a certificate which is explicitly not trusted.

Certificate Errors
The standard cryptlib error codes aren’t capable of returning full details on the wide
variety of possible error conditions which can be encountered when processing or

Certificate Errors 99

working with certificate objects, particularly when it comes to violations of certificate
usage constraints. If there is a problem with a certificate, cryptlib will return
CRYPT_ERROR_INVALID. In order to obtain more information on problems
which are encountered when you process a certificate you can read a certificates
CRYPT_ATTRIBUTE_ERRORLOCUS attribute to obtain the locus of the error (the
certificate component which caused the problem) and the CRYPT_ATTRIBUTE_-
ERRORTYPE attribute to obtain the error type. For example to obtain more
information on why an attempt to sign a certificate failed you would use:

CRYPT_CERTINFO_TYPE errorLocus;
CRYPT_ERRTYPE_TYPE errorType;

status = cryptSignCert(cryptCert, cryptCAKey);
if(cryptStatusError(status))

{
cryptGetAttribute(cryptCert, CRYPT_ATTRIBUTE_ERRORLOCUS,

&errorLocus);
cryptGetAttribute(cryptCert, CRYPT_ATTRIBUTE_ERRORTYPE, &errorType

);
}

More information on working with the extended error information is given in “Error
Handling” on page 158.

Certificate Extensions100

Certificate Extensions
Certificate extensions form by far the most complicated portion of certificates. By
default, cryptlib will add appropriate certificate extension attributes to certificates for
you if you don’t add any, but sometimes you may want to add or change these
yourself. cryptlib supports extensions in two ways, through the usual add/get/delete
attribute mechanism for extensions it recognises, and through
cryptAddCertExtension , cryptGetCertExtension, and cryptDeleteCertExtension
for general extensions it doesn’t recognise. The general extension handling
mechanism allows you to add, query, and delete any kind of extension to a certificate,
including ones you define yourself.

Extension Structure
X.509 version 3 introduced a mechanism by which additional information could be
added to certificates through the use of certificate extensions. The X.509 standard
defined a number of extensions, and over time other standards organisations defined
their own additions and amendments to these extensions. In addition private
organisations, businesses, and individuals have all defined their own extensions, some
of which (for example the extensions from Netscape and Microsoft) have seen a
reasonably wide amount of use.

An extension consists of three fields, which are:

Field Description

Type The extension type, a unique identifier called an object
identifier. This is given as a sequence of numbers which
trace a path through an object identifier tree. For example
the object identifier for the keyUsage extension is 2 5 29 15.
The object identifier for cryptlib is 1 3 6 1 4 1 3029 32.

Critical Flag A flag which defines whether the extension is important
enough that it must be processed by an application. If the
critical flag is set and an application doesn’t recognise the
extension, it will reject the certificate. Extensions should
only be marked critical if this is required to prevent the
unsafe use of a certificate, although it’s recommended that
certain basic extensions such as keyUsage and
basicConstraints always be marked critical.

Unfortunately since some standards (including X.509 itself)
allow implementations to selectively ignore non-critical
extensions, and support for extensions is often haphazard, it
may be necessary to mark an extension as critical in order to
ensure that other implementions process it. As usual, you
should check to see whether your intended target correctly
processes the extensions you plan to use.

Value The extension data.

For the extensions which cryptlib recognises and processes automatically, the
handling of the critical flag is automatic. Since some implementations will reject a
certificate which contains a critical extension, you can turn off the encoding of the
critical flag by setting CRYPT_OPTION_ENCODE_CRITICAL to false. By default,
cryptlib will encode the critical flag where this is recommended by the relevant
standards.

For extensions which cryptlib doesn’t handle itself, you need to set the critical flag
yourself when you add the extension data using cryptAddCertExtension .

Working with Extension Attributes 101

Working with Extension Attributes
cryptlib can identify attributes in extensions in one of three ways:

1. Through an extension identifier which denotes the entire extension. For example
CRYPT_CERTINFO_CERTPOLICIES denotes the certificatePolicies extension.

2. Through an attribute identifier which denotes a particular attribute within an
extension. For example CRYPT_CERTINFO_CERTPOLICY denotes the
policyIdentifier attribute contained within the certificatePolicies extension.

Some extensions only contain a single field, in which case the extension identifier
is the same as the attribute identifier. For example the CRYPT_CERTINFO_-
KEYUSAGE extension contains a single attribute which is also identified by
CRYPT_CERTINFO_KEYUSAGE.

3. Through an extension cursor mechanism which allows you to step through a set of
extensions extension by extension or field by field. This is explained in more
detail below.

You can use the extension identifier to determine whether a particular extension is
present with cryptGetAttribute (it will return CRYPT_ERROR_NOTFOUND if the
extension isn’t present), to delete an entire extension with cryptDeleteAttribute , and
to position the extension cursor at a particular extension.

Attributes within extensions are handled in the usual manner, for example to retrieve
the value of the basicConstraints CA field (which determines whether a certificate is a
CA certificate) you would use:

int isCA;

cryptGetAttribute(certificate, CRYPT_CERTINFO_CA, &isCA);

To determine whether the entire basicConstraints extension is present, you would use:

int basicConstraintsPresent;

status = cryptGetAttribute(certificate,
CRYPT_CERTINFO_BASICCONSTAINTS, &basicConstraintsPresent);

if(cryptStatusOK(status))
/* basicConstraints extension is present */

You don’t have to worry about the structure of individual extensions since cryptlib
will handle this for you. For example to make a certificate a CA certificate, all you
need to do is:

cryptSetAttribute(certificate, CRYPT_CERTINFO_CA, 1);

and cryptlib will construct the basicConstraints extension for you and set up the CA
attribute as required (in fact because the basicConstraints extension is a fundamental
X.509v3 extension, cryptlib will always add this by default even if you don’t
explicitly specify it).

If an attribute has already been assigned a value, an attempt to assign a new value to
it will return CRYPT_ERROR_INITED, and you must explicitly delete it before you
can assign it a new value.

Extension Cursor Management
Extensions and extension attributes can also be managed through the use of an
extension cursor which cryptlib maintains for each certificate object. You can set or
move the cursor by extension or by extension attribute, either to an absolute position
or relative to the current position.

You move the extension/attribute cursor by setting certificate attributes which tell
cryptlib where or how to move the cursor. These attributes, identified by
CRYPT_CERTINFO_CURRENT_EXTENSION for the extension and
CRYPT_CERTINFO_CURRENT_FIELD for the attribute field within the extension,
move the cursor to the particular extension or attribute. The attribute value which

Certificate Extensions102

you specify is the extension or extension attribute ID which you want to move the
cursor to. For example:

cryptSetAttribute(certificate, CRYPT_CERTINFO_CURRENT_EXTENSION,
CRYPT_CERTINFO_CA);

would move the extension cursor to the start of the extension containing the given
extension field (in this case the start of the basicConstraints extension). In contrast:

cryptSetAttribute(certificate, CRYPT_CERTINFO_CURRENT_FIELD,
CRYPT_CERTINFO_CA);

would move the cursor to the extension attribute (in this case the CA attribute in the
basicConstraints extension).

This type of cursor positioning is absolute cursor positioning, since it moves the
cursor to an absolute position in the extensions. You can also use relative cursor
positioning which positions the cursor relative to its current position. In this case
instead of specifying an extension or extension attribute ID as the value, you specify a
movement code which indicates how you want the cursor moved. The movement
codes are:

Code Description

CRYPT_CURSOR_FIRST Move the cursor to the first extension or the
first attribute in the extension.

CRYPT_CURSOR_LAST Move the cursor to the last extension or the last
attribute in the extension.

CRYPT_CURSOR_NEXT Move the cursor to the next extension or the
next attribute in the extension.

CRYPT_CURSOR_PREV Move the cursor to the previous extension or
the previous attribute in the extension.

For example to move the cursor to the start of the first extension, you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_CURRENT_EXTENSION,
CRYPT_CURSOR_FIRST);

To advance the cursor to the start of the next extension, you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_CURRENT_EXTENSION,
CRYPT_CURSOR_NEXT);

To advance the cursor to the next attribute in the extension, you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_CURRENT_FIELD,
CRYPT_CURSOR_NEXT);

Once you have the cursor position, you can work with the extension or extension
attribute at the cursor position. For example to delete the entire extension at the
current cursor position you would use:

cryptDeleteAttribute(certificate, CRYPT_CERTINFO_CURRENT_EXTENSION);

Deleting the extension at the cursor position will move the cursor to the start of the
extension which follows the deleted one, or to the start of the previous extension if
the one being deleted was the last one present. This means you can delete every
extension simply by repeatedly deleting the extension under the cursor.

To obtain the extension ID or extension attribute ID for the current cursor position,
you would use:

CRYPT_CERTINFO_TYPE extensionAttributeID;

cryptGetAttribute(certificate, CRYPT_CERTINFO_CURRENT_EXTENSION,
&extensionAttributeID);

This example obtains the extension ID, to obtain the extension attribute ID you would
substitute CRYPT_CERTINFO_CURRENT_FIELD in place of CRYPT_-
CERTINFO_CURRENT_EXTENSION.

Working with Extension Attributes 103

The extension cursor provides a convenient mechanism for stepping through every
extension which is present in a certificate object. For example to iterate through
every extension you would use:

if(cryptSetAttribute(certificate, CRYPT_CERTINFO_CURRENT_EXTENSION,
CRYPT_CURSOR_FIRST) == CRYPT_OK)
do

{
CRYPT_ATTRIBUTE_TYPE extensionID;

/* Get the ID of the extension under the cursor */
cryptGetAttribute(certificate,

CRYPT_CERTINFO_CURRENT_EXTENSION, &extensionID);
}

while(cryptSetAttribute(certificate,
CRYPT_CERTINFO_CURRENT_EXTENSION, CRYPT_CURSOR_NEXT) ==
CRYPT_OK);

To extend this a stage further and iterate through every attribute in every extension in
the certificate object, you would use:

if(cryptSetAttribute(certificate, CRYPT_CERTINFO_CURRENT_EXTENSION,
CRYPT_CURSOR_FIRST) == CRYPT_OK)
do

{
do

{
CRYPT_ATTRIBUTE_TYPE extensionAttributeID;

/* Get the attribute of the extension attribute under the
cursor */

cryptGetAttribute(certificate, CRYPT_CERTINFO_CURRENT_FIELD,
&extensionFieldID);

}
while(cryptSetAttribute(certificate,

CRYPT_CERTINFO_CURRENT_FIELD, CRYPT_CURSOR_NEXT) == CRYPT_OK
);

}
while(cryptSetAttribute(certificate,

CRYPT_CERTINFO_CURRENT_EXTENSION, CRYPT_CURSOR_NEXT) ==
CRYPT_OK);

Note that iterating attribute by attribute works within the current extension, but won’t
jump from one extension to the next — to do that, you need to iterate by extension.

Composite Extension Attributes
Some extension attributes are composite attributes which have further sub-
components within them. These attribute s are ones which contain complete
GeneralNames and/or DN’s and are handled in a manner similar to that used for
handling the extension cursor: You use cryptSetAttribute to identify the attribute
which contains the GeneralName or DN you want to work with, specifying a numeric
value of CRYPT_UNUSED since this parameter isn’t needed, and then get, set, or
delete attributes as usual:

cryptSetAttribute(certificate, CRYPT_CERTINFO_PERMITTEDSUBTREES,
CRYPT_UNUSED);

cryptSetAttributeString(certificate, CRYPT_CERTINFO_RFC822NAME,
rfc822Name, rfc822NameLength);

cryptSetAttributeString(certificate, CRYPT_CERTINFO_DNSNAME, dnsName,
dnsNameLength);

This code first identifies the nameConstraints permittedSubtrees GeneralName as the
one to be modified, and then sets the GeneralName attributes as usual. If you want to
set the DN (which is itself a composite field) within the GeneralName, you need to
perform a two-level selection, once to select the GeneralName to modify, and the
second time to select the DN within the GeneralName. Once this is done, you can
set, query, or delete DN components as usual:

/* Select the permittedSubtrees GeneralName, then select the
DirectoryName DN within the GeneralName */

cryptSetAttribute(certificate, CRYPT_CERTINFO_PERMITTEDSUBTREES,
CRYPT_UNUSED);

Certificate Extensions104

cryptSetAttribute(certificate, CRYPT_CERTINFO_DIRECTORYNAME,
CRYPT_UNUSED);

/* Set DN components */
cryptSetAttributeString(certificate, CRYPT_CERTINFO_COUNTRYNAME,

countryName, countryNameLength);
cryptSetAttributeString(certificate, CRYPT_CERTINFO_LOCALITYNAME,

localityName, localityNameLength);

This code first identifies the nameConstraints permittedSubtrees GeneralName as the
one to be modified, then selects the DN within the GeneralName, and finally sets the
DN components as usual. cryptlib uses this mechanism to access all DN’s and
GeneralNames, although this is usually hidden from you — when you modify a
certificate, attribute certificate, or certification requests DN, cryptlib automatically
uses the subject DN if you don’t explicitly specify it, and when you modify the
GeneralName cryptlib uses the subject altName if you don’t explicitly specify it. In
this way you can work with subject names and altNames without having to know
about the DN and GeneralName selection mechanism.

Once you’ve selected a different GeneralName and/or DN, it remains selected until
you select a different one, so if you wanted to move back to working with the subject
name after performing the operations shown above you’d need to use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_SUBJECTNAME,
CRYPT_UNUSED);

otherwise attempts to add, delete, or query further DN (or GeneralName) attributes
will apply to the selected nameConstrainst excludedSubtrees attribute instead of the
subject name.

X.509 Extensions
X.509 version 3 and assorted additional standards and revisions specify a large
number of extensions, all of which are handled by cryptlib. In addition there are a
number of proprietary and vendor-specific extensions which are also handled by
cryptlib.

In the following descriptions only the generally useful attributes have been described.
The full range of attributes is enormous, requires several hundred pages of standards
specifications to describe them all, and will probably never be used in real life. These
attributes are marked with “See certificate standards documents” to indicate that you
should refer to other documents to obtain information about their usage (this is also a
good indication that you shouldn’t really be using this attribute).

Alternative Names
The subject and issuer altNames are used to specify all the things which aren’t
suitable for the main certificate DN’s. The issuer altName is identified by
CRYPT_CERTINFO_ISSUERALTNAME and the subject altName is identified by
CRYPT_CERTINFO_SUBJECTALTNAME. Both consist of a single GeneralName
whose use is explained in “Extended Certificate Identification Information” on page
88. This extension is valid in certificates, certification requests, and CRL’s, and can
contain one of each type of GeneralName component.

Basic Constraints
This is a standard extension identified by CRYPT_CERTINFO_-
BASICCONSTRAINTS and is used to specify whether a certificate is a CA
certificate or not. If you don’t set this extension, cryptlib will set it for you and mark
the certificate as a non-CA certificate. This extension is valid in certificates, attribute
certificates, and certification requests, and has the following attributes:

X.509 Extensions 105

Attribute/Description Type

CRYPT_CERTINFO_CA Boolean
Whether the certificate is a CA certificate or not. When used with attribute
certificates, the CA is called an authority, so cryptlib will also accept the
alternative CRYPT_CERTINFO_AUTHORITY which has the same
meaning as CRYPT_CERTINFO_CA. If this attribute isn’t set, the
certificate is treated as a non-CA certificate.

CRYPT_CERTINFO_PATHLENCONSTRAINT Numeric
See certificate standards documents.

For example to mark a certificate as a CA certificate you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_CA, 1);

Certificate Policies, Policy Mappings, and Policy Constraints
The certificate policy extensions allow a CA to provide information on the policies
governing a certificate, and to control the way in which a certificate can be used. For
example it allows you to check that each certificate in a certificate chain was issued
under a policy you feel comfortable with (certain security precautions taken, vetting
of employees, physical security of the premises, and so on). The certificate policies
attribute is identified by CRYPT_CERTINFO_CERTIFICATEPOLICIES and is
valid in certificates.

The certificate policies attribute is a complex extension which allows for all sorts of
qualifiers and additional modifiers. In general you should only use the
policyIdentifier attribute in this extension, since the other attributes are difficult to
support in user software and seem to be ignored by most implementations:

Attribute/Description Type

CRYPT_CERTINFO_CERTPOLICYID String
The object identifier which identifies the policy under which this certificate
was issued.

CRYPT_CERTINFO_CERTPOLICY_CPSURI String
The URL for the certificate practice statement (CPS) for this certificate
policy.

CRYPT_CERTINFO_CERTPOLICY_ORGANIZATION
CRYPT_CERTINFO_CERTPOLICY_NOTICENUMBERS
CRYPT_CERTINFO_CERTPOLICY_EXPLICITTEXT

String
Numeric
String

These attributes contain further qualifiers, modifiers, and text information
which amend the certificate policy information. Refer to certificate
standards documents for more information on these attributes.

Since various CA’s which would like to accept each others certificates may have
differing policies, there is an extension which allows a CA to map its policies to those
of another CA. The policyMappings extension provides a means of mapping one
policy to another (that is, for a CA to indicate that policy A, under which it is issuing
a certificate, is equivalent to policy B, which is required by the certificate user). This
extension is is identified by CRYPT_CERTINFO_POLICYMAPPINGS and is valid
in certificates:

Attribute/Description Type

CRYPT_CERTINFO_ISSUERDOMAINPOLICY String
The object identifier for the source (issuer) policy.

CRYPT_CERTINFO_SUBJECTDOMAINPOLICY String
The object identifier for the destination (subject) policy.

A CA can also specify acceptable policy constraints for use in certificate chain
validation. The policyConstraints extension is identified by CRYPT_CERTINFO_-
POLICYCONSTRAINTS and is valid in certificates:

Certificate Extensions106

Attribute/Description Type

CRYPT_CERTINFO_REQUIREEXPLICITPOLICY Numeric
See certificate standards documents.

CRYPT_CERTINFO_INHIBITPOLICYMAPPING Numeric
See certificate standards documents.

CRL Distribution Points and Authority Information Access
These extensions specify how to obtain CRL information and information on the CA
which issued a certificate. The cRLDistributionPoint extension is valid in certificates
and is identified by CRYPT_CERTINFO_CRLDISTRIBUTIONPOINT:

Attribute/Description Type

CRYPT_CERTINFO_CRLDIST_FULLNAME GeneralName
The location at which CRL’s may be obtained. You should use the URL
component of the GeneralName for this, avoiding the other possibilities.

CRYPT_CERTINFO_CRLDIST_REASONS
CRYPT_CERTINFO_CRLDIST_CRLISSUER

Numeric
GeneralName

See certificate standards documents.

Note that the CRYPT_CERTINFO_CRLDIST_REASONS attribute has the same
allowable set of values as the cRLReasons reasonCode, but in this case is given as a
series of bit flags rather than the reasonCode numeric value (because X.509 says so,
that’s why). Because of this you must use CRYPT_CRLREASONFLAGS_name
instead of CRYPT_CRLREASON_name when getting and setting these values.

The authorityInfoAccess extension is valid in certificates and CRL’s and is identified
by CRYPT_CERTINFO_AUTHORITYINFOACCESS:

Attribute/Description Type

CRYPT_CERTINFO_AUTHORITYINFO_OCSP GeneralName
The location at which certificate status information can be obtained. You
should use the URL component of the GeneralName for this, avoiding the
other possibilities.

CRYPT_CERTINFO_AUTHORITYINFO_CAISSUERS GeneralName
The location at which information on CA’s located above the CA which
issued this certificate can be obtained. You should use the URL component
of the GeneralName for this, avoiding the other possibilities.

Directory Attributes
This extension, identified by CRYPT_CERTINFO_-
SUBJECTDIRECTORYATTRIBUTES, allows additional X.500 directory attributes
to be specified for a certificate. This extension is valid in certificates, and has the
following attributes:

Attribute/Description Type

CRYPT_CERTINFO_SUBJECTDIR_TYPE String
The object identifier which identifies the type of the directory attribute.

CRYPT_CERTINFO_SUBJECTDIR_VALUES String
The value of the directory attribute.

Key Usage, Extended Key Usage, and Netscape cert-type
These extensions specify the allowed usage for the key contained in this certificate.
The keyUsage attribute is a standard extension identifed by CRYPT_CERTINFO_-
KEYUSAGE and is used to specify general-purpose key usage such as key
encryption, digital signatures, and certificate signing. If you don’t set this attribute,

X.509 Extensions 107

cryptlib will set it for you to a value appropriate for the key type (for example a key
for a signature-only algorithm such as DSA will be marked as a signature key).

The extKeyUsage attribute is identified by CRYPT_CERTINFO_EXTKEYUSAGE
and is used to specify additional special-case usage such as code signing and SSL
server authentication.

The Netscape cert-type field is a vendor-specific attribute identified by
CRYPT_CERTINFO_NS_CERTTYPE and was used to specify certain types of web
browser-specific certificate usage before the extKeyUsage attribute was fully
specified. This attribute has now been superseded by extKeyUsage, but is still found
in a number of certificates.

The keyUsage extension has a single numeric attribute with the same identifier as the
extension itself (CRYPT_CERTINFO_KEYUSAGE). This extension is valid in
certificates and certification requests, and contains a bit flag which can contain any of
the following values:

Value Description

CRYPT_KEYUSAGE_-
DATAENCIPHERMENT

The key can be used for data encryption. This
implies using public-key encryption for bulk
data encryption, which is almost never done.

CRYPT_KEYUSAGE_-
DIGITALSIGNATURE

The key can be used for digital signature
generation and verification. This is the
standard flag to set for digital signature use.

CRYPT_KEYUSAGE_-
ENCIPHERONLY

CRYPT_KEYUSAGE_-
DECIPHERONLY

These flags modify the keyAgreement flag to
allow the key to be used for only one part of
the key agreement process.

CRYPT_KEYUSAGE_-
KEYAGREEMENT

The key can be used for key agreement. This
is the standard flag to set for key-agreement
algorithms such as Diffie-Hellman.

CRYPT_KEYUSAGE_-
KEYCERTSIGN

CRYPT_KEYUSAGE_-
CRLSIGN

The key can be used to sign certificates and
CRL’s. Using these flags requires the
basicConstraint CA value to be set.

CRYPT_KEYUSAGE_-
KEYENCIPHERMENT

The key can be used for key encryption/key
transport. This is the standard flag to set for
encryption use.

CRYPT_KEYUSAGE_-
NONREPUDIATION

The key can be used for nonrepudiation
purposes. Note that this use is subtly different
to CRYPT_KEYUSAGE_-
DIGITALSIGNATURE, so you shouldn’t set
this unless you really have created the key
within a nonrepudiation framework.

For example to mark the key in a certificate as being usable for digital signatures and
encryption you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_KEYUSAGE,
CRYPT_KEYUSAGE_DIGITALSIGNATURE | CRYPT_KEYUSAGE_KEYENCIPHERMENT);

The extKeyUsage attribute contains a collection of one or more values which specify
a specific type of extended usage which extends beyond the general keyUsage.

This extension is used by applications to determine whether a certificate is meant for
a particular purpose such as timestamping or code signing. The extension is valid in
certificates and certification requests and can contain any of the following values:

Certificate Extensions108

Value Used in

CRYPT_CERTINFO_EXTKEY_-
CODESIGNING

Code-signing certificate.

CRYPT_CERTINFO_EXTKEY_-
DIRECTORYSERVICE

Directory service certificate.

CRYPT_CERTINFO_EXTKEY_-
EMAILPROTECTION

email encryption/signing
certificate.

CRYPT_CERTINFO_EXTKEY_-
IPSECENDSYSTEM

CRYPT_CERTINFO_EXTKEY_-
IPSECTUNNEL

CRYPT_CERTINFO_EXTKEY_-
IPSECUSER

Various IPSEC certificates.

CRYPT_CERTINFO_EXTKEY_-
MS_CERTTRUSTLISTSIGNING

CRYPT_CERTINFO_EXTKEY_-
MS_TIMESTAMPSIGNING

Microsoft certificate trust list
signing and timestamping
certificate, used for AuthentiCode
signing.

CRYPT_CERTINFO_EXTKEY_-
MS_ENCRYPTEDFILESYSTEM

Microsoft encrypted filesystem
certificate.

CRYPT_CERTINFO_EXTKEY_-
MS_INDIVIDUALCODESIGNING

CRYPT_CERTINFO_EXTKEY_-
MS_COMMERCIALCODESIGNING

Microsoft individual and
commercial code-signing
certificate, used for AuthentiCode
signing.

CRYPT_CERTINFO_EXTKEY_-
MS_SERVERGATEDCRYPTO

Microsoft server-gated crypto
(SGC) certificate, used to enable
strong encryption on non-US
servers.

CRYPT_CERTINFO_EXTKEY_-
NS_SERVERGATEDCRYPTO

Netscape server-gated crypto
(SGC) certificate, used to enable
strong encryption on non-US
servers.

CRYPT_CERTINFO_EXTKEY_-
SERVERAUTH

CRYPT_CERTINFO_EXTKEY_-
CLIENTAUTH

SSL server and client
authentication certificate.

CRYPT_CERTINFO_EXTKEY_-
TIMESTAMPING

Timestamping certificate.

CRYPT_CERTINFO_EXTKEY_-
VS_SERVERGATEDCRYPTO_CA

Verisign server-gated crypto CA
certificate, used to sign SGC
certificates.

For example to mark the key in a certificate as being used for SSL server
authentication you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_EXTKEY_SERVERAUTH,
CRYPT_UNUSED);

Like the keyUsage extension, the Netscape cert-type extension has a single numeric
attribute with the same identifier as the extension itself (CRYPT_CERTINFO_NS_-
CERTTYPE). This extension is valid in certificates and certification requests and
contains a bit flag which can contain any of the following values:

Value Used in

CRYPT_NS_CERTTYPE_-
OBJECTSIGNING

Object signing certificate (equivalent to
Microsoft’s AuthentiCode use).

X.509 Extensions 109

CRYPT_NS_CERTTYPE_-
SMIME

S/MIME email encryption/signing
certificate.

CRYPT_NS_CERTTYPE_-
SSLCLIENT

CRYPT_NS_CERTTYPE_-
SSLSERVER

SSL client and server certificate.

CRYPT_NS_CERTTYPE_-
SSLCA

CRYPT_NS_CERTTYPE_-
SMIMECA

CRYPT_NS_CERTTYPE_-
OBJECTSIGNINGCA

CA certificates corresponding to the above
certificate types. Using these flags requires
the basicConstraint CA value to be set.

To mark a key in a certificate as being used for SSL server authentication as in the
previous example you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_NS_CERTTYPE,
CRYPT_NS_SSLSERVER);

Name Constraints
The nameConstraints extension is used to constrain the certificates’ subjectName and
subject altName to lie inside or outside a particular DN subtree or substring, with the
excludedSubtrees attribute taking precedence over the permittedSubtrees attribute.
The principal use for this extension is to allow control of the certificate namespace, so
that a CA can restrict the ability of any CA’s it certifies to issue certificates outside a
very restricted domain (for example corporate headquarters might constrain a
divisional CA to only issue certificates for its own business division). This extension
is identified by CRYPT_CERTINFO_NAMECONSTRAINTS, and is valid in
certificates:

Attribute/Description Type

CRYPT_CERTINFO_PERMITTEDSUBTREES GeneralName
The subtree within which the subjectName and subject altName of any
issued certificates must lie.

CRYPT_CERTINFO_EXCLUDEDSUBTREES GeneralName
The subtree within which the subjectName and subject altName of any
issued certificates must not lie.

Due to ambiguities in the encoding rules for strings contained in DN’s, it is possible
to avoid the excludedSubtrees for DN’s by choosing unusual (but perfectly valid)
string encodings which don’t appear to match the excludedSubtrees. Because of this
you should rely on permittedSubtrees rather than excludedSubtrees for DN constraint
enforcement.

The nameConstraints are applied to both the certificate subject name and the subject
altName. For example if a CA run by Cognitive Cybernetics Incorporated wanted to
issue a certificate to a subsidiary CA which was only permitted to issue certificates
for Cognitive Cybernetics’ marketing division, it would set DN name constraints
with:

cryptSetAttribute(certificate, CRYPT_CERTINFO_PERMITTEDSUBTREES,
CRYPT_UNUSED);

cryptSetAttribute(certificate, CRYPT_CERTINFO_DIRECTORYNAME,
CRYPT_UNUSED);

cryptSetAttributeString(certificate, CRYPT_CERTINFO_COUNTRYNAME,
"US", 2);

cryptSetAttributeString(certificate, CRYPT_CERTINFO_ORGANIZATIONNAME,
"Cognitive Cybernetics Incorporated", 32);

cryptSetAttributeString(certificate,
CRYPT_CERTINFO_ORGANIZATIONALUNITNAME, "Marketing", 9);

This means that the subsidiary CA can only issue certificates to employees of the
marketing division. Note that since the excludedSubtrees field is a GeneralName, the

Certificate Extensions110

DN is selected through a two-level process, first to select the excludedSubtrees
GeneralName and then to select the DN within the GeneralName.

GeneralName components which have a flat structure (for example email addresses)
can have constraints specified through the ‘*’ wildcard. For example to extend the
above constraint to also include email addresses, the issuing CA would set a name
constraint with:

cryptSetAttribute(certificate, CRYPT_CERTINFO_PERMITTEDSUBTREES,
CRYPT_UNUSED);

cryptSetAttributeString(certificate, CRYPT_CERTINFO_RFC822NAME,
"*@marketing.cci.com", 19);

This means that the subsidiary CA can only issue certificates with email addresses
within the marketing division. Note again the selection of the excludedSubtrees
GeneralName followed by the setting of the email address (if the GeneralName is still
selected from the earlier code, there’s no need to re-select it at this point).

Private Key Usage Period
This extensions specifies the date on which the private key for this certificate expires.
This extension is identified by CRYPT_CERTINFO_-
PRIVATEKEYUSAGEPERIOD and is valid in certificates. This is useful where a
certificate needs to have a much longer lifetime than the private key it corresponds to,
for example a long-term signature might have a lifetime of 10-20 years, but the
private key used to generate it should never be retained for such a long period. The
privateKeyUsagePeriod extension is used to specify a (relatively) short lifetime for
the private key while allowing for a very long lifetime for the signatures it generates:

Attribute/Description Type

CRYPT_CERTINFO_PRIVATEKEY_NOTBEFORE
CRYPT_CERTINFO_PRIVATEKEY_NOTAFTER

Binary data
Binary data

The private key usage period defines the period of time over which the
private key for a certificate object is valid. CRYPT_CERTINFO_-
PRIVATEKEY_NOTBEFORE specifies the validity start period, and
CRYPT_CERTINFO_PRIVATEKEY_NOTAFTER specifies the validity
end period, expressed in local time and using the standard ANSI/ISO C
seconds since 1970 format. This is a binary data field, with the data being
the timestamp value (in C and C++ this is a time_t , usually a signed long
integer).

Subject and Authority Key Identifiers
These extensions are used to provide additional identification information for a
certificate, and are usually generated automatically by certificate management code.
For this reason the extensions are marked as read-only.

The authorityKeyIdentifier is identified by CRYPT_CERTINFO_-
AUTHORITYKEYIDENTIFIER and has the following fields:

Attribute/Description Type

CRYPT_CERTINFO_AUTHORITY_KEYIDENTIFIER Binary data
Binary data identifying the public key in the certificate which was used to
sign this certificate.

CRYPT_CERTINFO_AUTHORITY_CERTISSUER
CRYPT_CERTINFO_AUTHORITY_-

CERTSERIALNUMBER

GeneralName
Binary data

The issuer name and serial number for the certificate which was used to sign
this certificate. The serial number is treated as a binary string and not as a
numeric value, since it is often 15-20 bytes long.

There are a number of incompatible standards definitions for key identifiers, and
many implementations augment these by inventing their own formats on top of the

CRL Extensions 111

standard ones. Because of this, cryptlib will not by default try to decode the
authorityKeyIdentifier, but will treat it as a single opaque blob with an unknown (or
at least irrelevant) internal structure, so that the CRYPT_CERTINFO_-
AUTHORITY_xxx attributes won’t be present. If you want cryptlib to try and decode
the authorityKeyIdentifier attributes, you can disable treating the extension data as an
opaque blob with the cryptlib configuration option CRYPT_OPTION_CERT_-
KEYIDENTIFIERBLOB as explained in “Miscellaneous Topics” on page 146.

The subjectKeyIdentifier is identified by CRYPT_CERTINFO_-
SUBJECTKEYIDENTIFIER and contains binary data identifying the public key in
the certificate.

CRL Extensions
CRL’s have a number of CRL-specific extensions which are described below.

CRL Reasons, CRL Numbers, Delta CRL Indicators
These extensions specify various pieces of information about CRL’s. The
reasonCode extension is used to indicate why a CRL was issued. The cRLNumber
extension provides a serial number for CRL’s. The deltaCRLIndicator indicates a
delta CRL which contains changes between a base CRL and a delta-CRL (this is used
to reduce the overall size of CRL’s).

The reasonCode extension is identified by CRYPT_CERTINFO_CRLREASON and
is valid in CRL’s. The extension has a single numeric field with the same identifier
as the extension itself (CRYPT_CERTINFO_CRLREASON) which contains a bit
flag which can contain one of the following values:

Value Description

CRYPT_CRLREASON_-
AFFILIATIONCHANGED

The affiliation of the certificate owner
has changed, so that the subjectName or
subject altName is no longer valid.

CRYPT_CRLREASON_-
CACOMPROMISE

The CA which issued the certificate was
compromised.

CRYPT_CRLREASON_-
CERTIFICATEHOLD

The certificate is to be placed on hold
pending further communication from the
CA (the further communication may be
provided by the holdInstructionCode
extension).

CRYPT_CRLREASON_-
CESSATIONOFOPERATION

The certificate owner has ceased to
operate in the role which requires the use
of the certificate.

CRYPT_CRLREASON_-
KEYCOMPROMISE

The key for the certificate was
compromised.

CRYPT_CRLREASON_-
REMOVEFROMCRL

The certificate should be removed from
the certificate revocation list.

CRYPT_CRLREASON_-
SUPERSEDED

The certificate has been superseded.

CRYPT_CRLREASON_-
UNSPECIFIED

No reason for the CRL. You should
avoid including a reasonCode at all rather
than using this code.

To indicate that a certificate is being revoked because the key it corresponds to has
been compromised, you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_CRLREASON,
CRYPT_CRLREASON_KEYCOMPROMISE);

Certificate Extensions112

The cRLNumber extension is identified by CRYPT_CERTINFO_CRLNUMBER and
is valid in CRL’s. The extension has a single attribute with the same identifier as the
extension itself (CRYPT_CERTINFO_CRLNUMBER) which contains a
monotonically increasing sequence number for each CRL issued. This allows an
application to check that it has received and processed each CRL which was issued.

The deltaCRLIndicator extension is identified by CRYPT_CERTINFO_-
DELTACRLINDICATOR and is valid in CRL’s. The extension has a single attribute
with the same identifier as the extension itself (CRYPT_CERTINFO_-
DELTACRLINDICATOR) which contains the cRLNumber of the base CRL from
which this delta CRL is being constructed (see certificate standards documents for
more information on delta CRL’s).

Hold Instruction Code
This extension contains a code which specifies what to do with a certificate which has
been placed on hold through a CRL (that is, its revocation reasonCode is
CRYPT_CRLREASON_CERTIFICATEHOLD). The extension is identified by
CRYPT_CERTINFO_HOLDINSTRUCTIONCODE, is valid in CRL’s, and can
contain one of the following values:

Value Description

CRYPT_HOLDINSTRUCTION_-
CALLISSUER

Call the certificate issuer for
details on the certificate hold.

CRYPT_HOLDINSTRUCTION_NONE No hold instruction code. You
should avoid including a
holdInstructionCode at all rather
than using this code.

CRYPT_HOLDINSTRUCTION_-
REJECT

Reject the transaction which the
revoked/held certificate was to be
used for.

As the hold code descriptions indicate, this extension was developed mainly for use
in the financial industry. To indicate that someone should call the certificate issuer
for further information on a certificate hold, you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_HOLDINSTRUCTIONCODE,
CRYPT_HOLDINSTRUCTION_CALLISSUER);

Invalidity Date
This extension contains the date on which the private key for a certificate became
invalid. The extension is identified by CRYPT_CERTINFO_INVALIDITYDATE
and is valid in CRL’s:

Attribute/Description Type

CRYPT_CERTINFO_INVALIDITYDATE Binary data
The date on which the key identified in a CRL became invalid, expressed in
local time and using the standard ANSI/ISO C seconds since 1970 format.
This is a binary data field, with the data being the timestamp value (in C and
C++ this is a time_t , usually a signed long integer).

Note that a CRL contains both its own date and a date for each revoked certificate, so
this extension is only useful if there’s some reason for communicating the fact that a
key compromise occurred at a time other than the CRL issue time or the certificate
revocation time.

Issuing Distribution Point and Certificate Issuer
These extensions specify the CRL distribution point for a CRL and provide various
pieces of additional information about the distribution point. The
issuingDistributionPoint specifies the distribution point for a CRL, and the

Digital Signature Legislation Extensions 113

certificateIssuer specifies the issuer for an indirect CRL as indicated by the
issuingDistributionPoint extension.

The issuingDistributionPoint extension is identified by CRYPT_CERTINFO_-
ISSUINGDISTRIBUTIONPOINT and is valid in CRL’s:

Attribute/Description Type

CRYPT_CERTINFO_ISSUINGDIST_FULLNAME GeneralName
The location at which CRL’s may be obtained. You should use the URL
component of the GeneralName for this, avoiding the other possibilities.

CRYPT_CERTINFO_ISSUINGDIST_USERCERTSONLY
CRYPT_CERTINFO_ISSUINGDIST_CACERTSONLY
CRYPT_CERTINFO_ISSUINGDIST_SOMEREASONSONLY
CRYPT_CERTINFO_ISSUINGDIST_INDIRECTCRL

Boolean
Boolean
Numeric
Boolean

See certificate standards documents.

Note that the CRYPT_CERTINFO_ISSUINGDIST_SOMEREASONSONLY
attribute has the same allowable set of values as the cRLReasons reasonCode, but in
this case is given as a series of bit flags rather than the reasonCode numeric value
(because X.509 says so, that’s why). Because of this you must use CRYPT_-
CRLREASONFLAGS_name instead of CRYPT_CRLREASON_name when getting
and setting these values.

The certificateIssuer extension contains the certificate issuer for an indirect CRL.
The extension is identified by CRYPT_CERTINFO_CERTIFICATEISSUER and is
valid in CRL’s:

Attribute/Description Type

CRYPT_CERTINFO_CERTIFICATEISSUER GeneralName
See certificate standards documents.

Digital Signature Legislation Extensions
Various digital signature laws specify extensions beyond the X.509v3 ones which are
described below.

Certificate Generation Date
The German signature law specifies an extension containing the date at which the
certificate was generated. This is necessary for postdated certificates to avoid
problems if the CA’s key is compromised between the time the certificate is issued
and the time it takes effect. The extension is identified by CRYPT_CERTINFO_-
SIGG_DATEOFCERTGEN and contains the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_SIGG_DATEOFCERTGEN Time
The date on which the certificate was issued, expressed in local time and
using the standard ANSI/ISO C seconds since 1970 format. This is a binary
data field, with the data being the timestamp value (in C and C++ this is a
time_t , usually a signed long integer).

Other Restrictions
The German signature law specifies an extension containing any other general free-
form restrictions which may be imposed on the certificate. The extension is
identified by CRYPT_CERTINFO_SIGG_RESTRICTION and contains the
following attributes:

Certificate Extensions114

Attribute/Description Type

CRYPT_CERTINFO_SIGG_RESTRICTION String
Text containing any further restrictions not already handled via certificate
policies or constraints.

Reliance Limit
The German signature law specifies an extension containing a reliance limit for the
certificate, which specifies the (recommended) monetary reliance limit for the
certificate. The extension is identified by CRYPT_CERTINFO_SIGG_-
MONETARYLIMIT and contains the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_SIGG_MONETARY_CURRENCY String
The three-letter currency code.

CRYPT_CERTINFO_SIGG_MONETARY_AMOUNT Integer
The amount, specified as an integer in the range 1…200.

CRYPT_CERTINFO_SIGG_MONETARY_EXPONENT Integer
The exponent for the amount, specified as an integer 1…200, so that the
actual value is amount × 10exponent.

Signature Delegation
The German signature law specifies an extension containing details about signature
delegation, in which one party may sign on behalf of another (for example someone’s
secretary signing correspondence on their behalf). The extension is identified by
CRYPT_CERTINFO_SIGG_PROCURATION and contains the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_SIGG_PROCURE_-
TYPEOFSUBSTITUTION

String

The type of signature delegation being performed (for example “Signed on
behalf of”).

CRYPT_CERTINFO_SIGG_PROCURE_SIGNINGFOR GeneralName
The identity of the person or organisation the signer is signing on behalf of.

SET Extensions
SET specifies a number of extensions beyond the X.509v3 ones which are described
below.

SET Card Required and Merchant Data
These extensions specify various pieces of general information used in the SET
electronic payment protocol.

The cardRequired extension contains a flag indicating whether a card is required for a
transaction. The extension is identified by CRYPT_CERTINFO_SET_-
CERTCARDREQUIRED, and is valid in certificates and certification requests. The
extension contains a single boolean attribute with the same identifier as the extension
itself (CRYPT_CERTINFO_SET_CARDREQUIRED) which is explained in the SET
standards documents.

The merchantData extension contains further information on a merchant. The
extension is identified by CRYPT_CERTINFO_SET_MERCHANTDATA and is
valid in certificates and certification requests:

SET Extensions 115

Attribute/Description Type

CRYPT_CERTINFO_SET_MERACQUIRERBIN
CRYPT_CERTINFO_SET_MERAUTHFLAG
CRYPT_CERTINFO_SET_MERCOUNTRY
CRYPT_CERTINFO_SET_MERID

String
Boolean
Numeric
String

Merchants 6-digit BIN, authorisation flag, ISO country code, and merchant
ID.

CRYPT_CERTINFO_SET_MERCHANTCITY
CRYPT_CERTINFO_SET_MERCHANTCOUNTRYNAME
CRYPT_CERTINFO_SET_MERCHANTLANGUAGE
CRYPT_CERTINFO_SET_MERCHANTNAME
CRYPT_CERTINFO_SET_MERCHANTPOSTALCODE
CRYPT_CERTINFO_SET_MERCHANTSTATEPROVINCE

String
String
String
String
String
String

Merchants language, name, city, state or province, postal code, and country
name.

SET Certificate Type, Hashed Root Key, and Tunneling
These extensions specify various pieces of certificate management information used
in the SET electronic payment protocol.

The certificateType extension contains the SET certificate type. The extension is
identified by CRYPT_CERTINFO_SET_CERTIFICATETYPE and is valid in
certificates and certification requests. The extension contains has a single bit flag
attribute with the same identifier as the extension itself (CRYPT_CERTINFO_SET_-
CERTIFICATETYPE) and can contain any of the following values which are
explained in the SET standards documentation:

Value

CRYPT_SET_CERTTYPE_ACQ

CRYPT_SET_CERTTYPE_BCA

CRYPT_SET_CERTTYPE_CARD

CRYPT_SET_CERTTYPE_CCA

CRYPT_SET_CERTTYPE_GCA

CRYPT_SET_CERTTYPE_MCA

CRYPT_SET_CERTTYPE_MER

CRYPT_SET_CERTTYPE_PCA

CRYPT_SET_CERTTYPE_PGWY

CRYPT_SET_CERTTYPE_RCA

The hashedRootKey extension contains a thumbprint (SET-speak for a hash) of a
SET root key. The extension is identified by CRYPT_CERTINFO_SET_-
HASHEDROOTKEY and is valid in certificates and certification requests. The
extension contains a single attribute:

Attribute/Description Type

CRYPT_CERTINFO_SET_ROOTKEYTHUMBPRINT Binary data
Binary string containing the root key thumbprint (see the SET standards
documents).

You can the obtain key hash which is required for the thumbprint from another
certificate by reading its CRYPT_CERTINFO_SUBJECTKEYIDENTIFIER attribute
and then adding it to the certificate you’re working with as the CRYPT_-
CERTINFO_SET_ROOTKEYTHUMBPRINT attribute. cryptlib will perform the
further work required to convert this attribute into the root key thumbprint.

Certificate Extensions116

The tunneling extension contains a tunneling indicator and algorithm identifier. The
extension is identified by CRYPT_CERTINFO_SET_TUNNELING and is valid in
certificates and certification requests.

Attribute/Description Type

CRYPT_CERTINFO_SET_TUNNELINGFLAG
CRYPT_CERTINFO_SET_TUNNELINGALGID

Boolean
String

See SET standards documents.

Vendor-specific Extensions
A number of vendors have defined their own extensions which extend or complement
the X.509 ones. These are described below.

Netscape Certificate Extensions
Netscape defined a number of extensions which mostly predate the various X.509v3
extensions which now provide the same functionality. The various Netscape
certificate extensions are:

Extension/Description Type

CRYPT_CERTINFO_NS_BASEURL String
A base URL which, if present, is added to all partial URL’s in Netscape
extensions to create a full URL.

CRYPT_CERTINFO_NS_CAPOLICYURL String
The URL at which the certificate policy under which this certificate was
issued can be found.

CRYPT_CERTINFO_NS_CAREVOCATIONURL String
The URL at which the revocation status of a CA certificate can be checked.

CRYPT_CERTINFO_NS_CERTRENEWALURL String
The URL at which a form allowing renewal of this certificate can be found.

CRYPT_CERTINFO_NS_COMMENT String
A comment which should be displayed when the certificate is viewed.

CRYPT_CERTINFO_NS_REVOCATIONURL String
The URL at which the revocation status of a server certificate can be
checked.

CRYPT_CERTINFO_NS_SSLSERVERNAME String
A wildcard string containing a shell expression which matches the hostname
of the SSL server using this certificate.

Note that each of these entries represent a separate extension containing a single text
string, they have merely been listed in a single table for readability. You should
avoid using these extensions if possible and instead use one of the standard X.509v3
extensions.

Thawte Certificate Extensions
Thawte Consulting have defined an extension which allows the use of certificates
with secure extranets. This extension is identified by CRYPT_CERTINFO_-
STRONGEXTRANET and is valid in certificates and certification requests:

Attribute/Description Type

CRYPT_CERTINFO_STRONGEXTRANET_ZONE
CRYPT_CERTINFO_STRONGEXTRANET_ID

Numeric
Binary data

Extranet zone and ID.

Updating a Private Key with Certificate Information 117

Maintaining Keys and Certificates
Although cryptlib and PGP can work directly with private keys, other formats like
X.509 certificates, S/MIME messages, and SSL require complex and convoluted
naming and identification schemes for their keys. Because of this, you can’t
immediately use a newly-generated private key with these formats for anything other
than signing a certification request or a self-signed certificate. To use it for any other
purpose, you need to obtain an X.509 certificate which identifies the key.

This presents something of a problem, since the certificate isn’t generally available
when the key is generated and written to a cryptlib key file, smart card, or crypto
device. To resolve this, cryptlib provides a means of updating a keyset or device with
additional information which amends the basic public/private key data. This
additional information can be a key certificate or a full certificate chain from a trusted
root CA down to the key certificate. This chapter covers the details of obtaining a
certificate or certificate chain and attaching it to a private key.

In addition to creating keys, you may occasionally need to revoke them. Revoked
keys are handled via certificate revocation lists (CRL’s), which work like 1970’s-
vintage credit card blacklists by providing users with a list of certificates which
shouldn’t be honoured any more. Revocations can only be issued by a CA, so to
revoke a certificate you either have to be a CA or have the cooperation of a CA. This
chapter covers the details of creating and issuing CRL’s.

Updating a Private Key with Certificate Information
Once a public/private key pair is saved to a private key keyset, cryptlib allows extra
certificate information to be retroactively added to the keyset. For example the
process of creating a keyset containing a certificate and private key is:

generate public/private key pair;
write key pair to keyset;
submit certification request request to certificate authority;
receive certificate from certification authority;
update keyset to include certificate;

If the key pair is being generated in a crypto device such as a smart card or Fortezza
card, this process is:

generate public/private key pair;
submit certification request request to certificate authority;
receive certificate from certification authority;
update device to include certificate;

This example assumes that the certificate is immediately available from a CA, which
is not always the case. The full range of possibilities are covered in more detail
further on.

The update process involves adding the certificate information to the keyset or
device, which updates it with the certificate object (either a certificate or a certificate
chain):

cryptAddPublicKey(cryptKeyset, cryptCertificate);

The certificate object which is being written must match a private key stored in the
keyset or device. If it doesn’t match a private key, cryptlib will return a CRYPT_-
ERROR_PARAM2 error to indicate that the information in the certificate object
being added is incorrect.

If the keyset you’re updating is a smart card keyset, you should ensure that the card
has enough capacity to store the combined certificate object and private key. cryptlib
will check whether enough room is available to write both components, and return a
CRYPT_ERROR_OVERFLOW error if there isn’t enough capacity to store the
updated key, in which case you need to copy the private key to a card with more
storage capacity and update it there. The private key itself typically requires 500-2K
bytes of storage, the certificate object expands this by the size of the encoded

Maintaining Keys and Certificates118

certificate components (typically a few hundred bytes for a certification request, 500-
1K bytes for a certificate, and up to 10K for a certificate chain), so the smaller
memory cards won’t have enough capacity to store a key and certificate, and fairly
serious cards are required to store certificate chains.

Changing a Private Key Password
Changing the password on a private key file involves reading the key from a keyset
using the old password, deleting the key from the keyset, and writing the in-memory
copy back again using the new password:

read key from keyset using old password;
delete key from keyset;
re-write key to keyset using new password;

All cryptlib key file updates are atomic all-or-nothing operations, which means that if
the computer crashes between deleting the old key and writing the new one, the old
key will still be present when the machine is rebooted (specifically, all changes are
committed when the keyset is closed, which minimises the risk of losing data due to a
system crashe or power outage in the middle of a long sequence of update
operations).

To update a private key with a new password, you’d use code like:

CRYPT_KEYSET cryptKeyset;
CRYPT_CONTEXT cryptKey;

/* Read the key from the keyset using the old password */
cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_FILE, keysetName,

CRYPT_KEYOPT_NONE);
cryptGetPrivateKey(cryptKeyset, &cryptKey, CRYPT_KEYID_NAME, label,

oldPassword);

/* Delete the current copy of the key from the keyset */
cryptDeleteKey(cryptKeyset, label);

/* Write the key back to the keyset using the new password */
cryptAddPrivateKey(cryptKeyset, cryptKey, newPassword);
cryptKeysetClose(cryptKeyset);

The Certification Process
Creating a private key and associated certificate involves two separate processes:
generating the public/private key pair, and obtaining a certificate for the public key
which is then attached to the public/private key. The key generation process is:

generate public/private key pair;
write key pair to keyset;

For a crypto device such as a smart card or Fortezza card, the key is generated inside
the device, so this step simplifies to:

generate public/private key pair;

The generated key is already stored inside the device, so there’s no need to explicitly
write it to any storage media.

The certification process varies somewhat, a typical case has already been presented
earlier:

create certification request;
submit certification request to certificate authority;
receive certificate from certification authority;
update keyset or device to include certificate;

Now that the general outline has been covered, we can look at the individual steps in
more detail. Generating a public/private key pair and saving it to a keyset is
relatively simple:

CRYPT_CONTEXT cryptContext;
CRYPT_KEYSET cryptKeyset;

The Certification Process 119

/* Create an RSA public-key context, set a label for it, and generate
a key into it */

cryptCreateContext(&cryptContext, CRYPT_ALGO_RSA);
cryptSetAttributeString(&cryptContext, CRYPT_CTXINFO_LABEL, "Private

key", 11);
cryptGenerateKey(cryptContext);

/* Save the generated public/private key pair to a keyset */
cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_FILE, fileName,

CRYPT_KEYOPT_CREATE);
cryptAddPrivateKey(cryptKeyset, cryptContext, password);
cryptKeysetClose(cryptKeyset);

/* Clean up */
cryptDestroyContext(cryptContext);

The process for a device is identical except that the keyset write is omitted, since the
key is already held inside the device.

In practice you’d probably use cryptGenerateKeyAsync so the user can perform
other actions while the key is being generated. Typically you’d run the key
generation (via cryptGenerateKeyAsync) and the certification request creation in
parallel so that by the time the certificate details have been filled in the key is ready
for use.

At the same time as you create and save the public/private key pair, you would create
a certification request:

CRYPT_CERTIFICATE cryptCertRequest;

/* Create a certification request */
cryptCreateCert(cryptCertRequest, CRYPT_CERTTYPE_CERTREQUEST);

/* Fill in the certification request details */
/* ... */

The next step depends on the speed with which the certification request can be turned
into a certificate. If the CA’s turnaround time is very quick (for example if it’s
operated in-house) then you can submit the request directly to the CA to convert it
into a certificate. In this case you can keep the keyset which you wrote the key to
open and update it immediately with the certificate:

CRYPT_CERTIFICATE cryptCert;

/* Send the certification request to the CA and obtain the returned
certificate */

/* ... */

/* Import the certificate and check its validity */
cryptImportCert(certificate, &cryptCert);
cryptCheckCert(cryptCert, caCertificate);

/* Update the still-open keyset with the certificate */
cryptAddPublicKey(cryptKeyset, cryptCert);

/* Clean up */
cryptKeysetClose(cryptKeyset);
cryptDestroyCert(cryptCert);

Since a device acts just like a keyset for certificate updates, you can write a certificate
to a device in the same manner.

If, as will usually be the case, the certification turnaround time is somewhat longer,
you will need to wait awhile to receive the certificate back from the CA. Once the
certificate arrives from the CA, you update the keyset as before:

CRYPT_CERTIFICATE cryptCert;
CRYPT_KEYSET cryptKeyset;

/* Obtain the returned certificate from the CA */
/* ... */

/* Import the certificate and check its validity */
cryptImportCert(certificate, &cryptCert);

Maintaining Keys and Certificates120

cryptCheckCert(cryptCert, caCertificate);

/* Open the keyset for update and add the certificate */
cryptKeysetOpen(&cryptKeyset, CRYPT_KEYSET_FILE, fileName,

CRYPT_KEYOPT_NONE);
cryptAddPublicKey(cryptKeyset, cryptCert);
cryptKeysetClose(cryptKeyset);

/* Clean up */
cryptDestroyCert(cryptCert);

Again, device updates work in the same manner.

A final case involves self-signed certificates. In this case you can immediately
update the (still-open) keyset with the self-signed certificate without any need to go
through the usual certification process:

CRYPT_CERTIFICATE cryptCert;

/* Create a self-signed certificate */
cryptCreateCert(cryptCert, CRYPT_CERTTYPE_CERTIFICATE);
/* ... */

/* Sign the certificate with the private key and update the still-open
keyset with it*/

cryptSetAttribute(cryptCert, CRYPT_CERTINFO_SELFSIGNED, 1);
cryptSignCert(cryptCert, cryptContext);
cryptAddPublicKey(cryptKeyset, cryptCert);

/* Clean up */
cryptKeysetClose(cryptKeyset);
cryptDestroyCert(cryptCert);

Certificate Chains
Because of the lack of availability of a general-purpose certificate directory, many
security protocols (most notable S/MIME and SSL) transmit not individual
certificates but entire certificate chains which contain a complete certificate path from
the end users certificate up to some widely-trusted CA certificate (referred to as a root
CA certificate if it’s a self-signed CA certificates) whose trust will be handled for you
by cryptlib’s trust manager. cryptlib supports the creation, import, export, and
checking of certificate chains as CRYPT_CERTTYPE_CERTCHAIN objects, with
individual certificates in the chain being accessed as if they were standard certificates
contained in a CRYPT_CERTTYPE_CERTIFICATE object.

Working with Certificate Chains
Individual certificates in a chain are addressed through a certificate cursor which
functions in the same way as the extension cursor discussed in “Extension Cursor
Management” on page 98. Although a certificate chain object appears as a single
object, it consists internally of a collection of certificates of which the first in the
chain is the end-users certificate and the last is a root CA certificate or at least an
implicitly trusted CA certificate.

You can move the certificate cursor using the CRYPT_CERTINFO_CURRENT_-
CERTIFICATE certificate attribute and the following cursor movement codes:

Code Description

CRYPT_CURSOR_FIRST Move the cursor to the first certificate in the
chain.

CRYPT_CURSOR_LAST Move the cursor to the last certificate in the
chain.

CRYPT_CURSOR_NEXT Move the cursor to the next certificate in the
chain.

CRYPT_CURSOR_PREV Move the cursor to the previous certificate in

Certificate Chains 121

Code Description
the chain.

For example to move the cursor to the first (end-user) certificate in the chain, you
would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_CURRENT_CERTIFICATE,
CRYPT_CURSOR_FIRST);

To advance the cursor to the next certificate, you would use:

cryptSetAttribute(certificate, CRYPT_CERTINFO_CURRENT_CERTIFICATE,
CRYPT_CURSOR_NEXT);

The certificate cursor and the extension/extension attribute cursor are two completely
independent objects, so moving the certificate cursor from one certificate to another
doesn’t affect the extension cursor setting for each certificate. If you select a
particular extension in a certificate, then move to a different certificate and select an
extension in that, and then move back to the first certificate, the original extension
will still be selected.

Once you’ve selected a particular certificate in the chain, you can work with it as if it
were the only certificate contained in the certificate object. The initially selected
certificate is the end-users certificate at the start of the chain. For example to read the
commonName from the subject name for the end-users certificate and for the next
certificate in the chain you would use:

char commonName[CRYPT_MAX_TEXTSIZE + 1];
int commonNameLength;

/* Retrieve the commonName from the end-users certificate */
cryptGetAttributeString(cryptCertChain, CRYPT_CERTINFO_COMMONNAME,

commonName, &commonNameLength);
commonName[commonNameLength] = ‘\0’;

/* Move to the next certificate in the chain */
cryptSetAttribute(cryptCertChain, CRYPT_CERTINFO_CURRENT_CERTIFICATE,

CRYPT_CURSOR_NEXT);

/* Retrieve the commonName from the next certificate */
cryptGetAttributeString(cryptCertChain, CRYPT_CERTINFO_COMMONNAME,

commonName, &commonNameLength);
commonName[commonNameLength] = ‘\0’;

Apart from this, certificate chains work just like certificates — you can import them,
export them, verify the signatures on them (which verifies the entire chain of
certificates until a trusted certificate is reached), and write them to and read them
from private key keysets in exactly the same manner as an individual certificate. You
can also write them to public key keysets, although what is written is the currently
selected certificate rather than the entire chain, since the keyset stores individual
certificates and not composite objects like certificate chains.

Signing Certificate Chains
When you sign a single subject certificate using cryptSignCert, a small amount of
information is copied from the issuer certificate to the subject certificate as part of the
signing process, and the result is a single, signed subject certificate. In contrast
signing a single subject certificate contained in a certificate chain object results in the
signing certificates (either a single issuer certificate or an entire chain of certificates)
being copied over to the certificate chain object so that the signed certificate ends up
as part of a complete chain. The exact details are as follows:

Object to sign Signing object Result

Certificate Certificate Certificate

Certificate Certificate chain Certificate

Certificate chain Certificate Certificate chain, length = 2

Maintaining Keys and Certificates122

Object to sign Signing object Result
Certificate chain Certificate chain Certificate chain, length =

length of signing chain + 1

For example the following code produces a single signed certificate:

CRYPT_CERTIFICATE cryptCert;

/* Build a certificate from a cert request */
cryptCreateCert(&cryptCert, CRYPT_CERTTYPE_CERTIFICATE);
cryptSetAttribute(cryptCert, CRYPT_CERTINFO_CERTREQUEST,

cryptCertRequest);

/* Read a private key with cert chain from a private key keyset */
/* ... */

/* Sign the certificate */
cryptSignCert(cryptCert, caPrivateKey);

In contrast the following code produces a complete certificate chain, since the object
being created is a CRYPT_CERTTYPE_CERTCHAIN (which can hold a complete
chain) rather than a CRYPT_CERTTYPE_CERTIFICATE (which only holds a single
certificate):

CRYPT_CERTIFICATE cryptCertChain;

/* Build a certificate from a cert request */
cryptCreateCert(&cryptCertChain, CRYPT_CERTTYPE_CERTCHAIN);
cryptSetAttribute(cryptCertChain, CRYPT_CERTINFO_CERTREQUEST,

cryptCertRequest);

/* Read a private key with cert chain from a private key keyset */
/* ... */

/* Sign the certificate chain */
cryptSignCert(cryptCertChain, caPrivateKey);

By specifying the object type to be signed, you can choose between creating a single
signed certificate or a complete certificate chain.

Checking Certificate Chains
When verifying a certificate chain with cryptCheckCert , you don’t have to supply
an issuer certificate since the chain should contain all the issuer certificates up to one
which is trusted by cryptlib:

CRYPT_CERTIFICATE cryptCertChain;

/* Verify an entire cert chain */
cryptCheckCert(cryptCertChain, CRYPT_UNUSED);

As with self-signed certificates, you can also pass in the cert chain as the signing
certificate instead of using CRYPT_UNUSED, this has the same effect since the cert
chain is both the signed and signing object.

If a certificate in the chain is invalid or the chain doesn’t contain a trusted certificate
at some point in the chain, cryptlib will return an appropriate error code and leave the
invalid certificate as the currently selected one, allowing you to obtain information
about the nature of the problem by reading the error information attributes as
explained in “Error Handling” on page 158.

If the error encountered is the fact that the chain doesn’t contain a trusted certificate
somewhere along the line, cryptlib will either mark the top-level certificate as having
a missing CRYPT_CERTINFO_TRUSTEDUSAGE attribute if it’s a CA root
certificate (that is, there’s a root certificate present but it isn’t trusted) or mark the
chain a whole as having a missing certificate if there’s no CA root certificate present
and no trusted certificate present either. Certificate trust management is explained in
more detail in “Certificate Management” on page 76.

Certificate chain validation is an extremely complex process which takes into account
an enormous amount of validation information which may be spread across an entire

Certificate Revocation Lists 123

certificate chain. For example in a chain of 10 certificates, the 3rd certificate from the
root may place a constraint which doesn’t take effect until the 7th certificate from the
root is reached. Because of this, a reported validation problem isn’t necessary related
to a given certificate and its immediate issuing certificate, but may have been caused
by a different certificate a number of steps further along the chain.

Some certificate chains may not contain or be signed by a trusted CA certificate, but
may end in a root CA certificate with an unknown trust level. Since the cryptlib trust
manager can’t provide any information about this certificate, it won’t be possible to
verify the chain. If you want to explicitly trust the root CA certificate, you can use
the cryptlib configuration option CRYPT_OPTION_CERT_TRUSTCHAINROOT to
force cryptlib to explicitly trust the CA root certificate, but this isn’t recommended
since it bypasses the normal trust management mechanisms.

Exporting Certificate Chains
As is the case when signing certificates and certificate chains, cryptlib gives you a
high degree of control over what part of the chain you want to export. By specifying
an export format of CRYPT_CERTFORMAT_CERTIFICATE or CRYPT_-
CERTFORMAT_CERTCHAIN, you can control whether a single certificate or an
entire chain is exported. The exact details are as follows:

Object type Export format Result

Certificate Certificate Certificate

Certificate Certificate chain Certificate chain, length = 1

Certificate chain Certificate Currently selected certificate in
the chain

Certificate chain Certificate chain Certificate chain

For example the following code exports the currently selected certificate in the chain
as a single certificate:

CRYPT_CERTIFICATE cryptCertChain;
void *certificate;
int certificateLength;

/* Allocate memory for the encoded certificate */
certificate = malloc(...);

/* Export the currently selected certificate from the certificate
chain */

cryptExportCert(certificate, &certificateLength,
CRYPT_CERTFORMAT_CERTIFICATE, cryptCertChain);

In contrast the following code exports the entire certificate chain:

CRYPT_CERTIFICATE cryptCertChain;
void *certChain;
int certChainLength;

/* Allocate memory for the encoded certificate chain */
certChain = malloc(...);

/* Export the entire certificate chain */
cryptExportCert(certChain, &certChainLength,

CRYPT_CERTFORMAT_CERTCHAIN, cryptCertChain);

Certificate Revocation Lists
Once a certificate has been issued, you may need to revoke it before its expiry date if
the private key it corresponds to is lost or stolen, or if the details given in the
certificate (for example your job role or company affiliation) change. Certificate
revocation is done through a certificate revocation list (CRL) which contains
references to one or more certificates which have been revoked by a CA. cryptlib
supports the creation, import, export, and checking of CRL’s as CRYPT_-
CERTTYPE_CRL objects, with individual revocation entries accessed as if they were

Maintaining Keys and Certificates124

standard certificate components. Note that these entries are merely references to
revoked certificates and not the certificates themselves, so all they contain is a
certificate reference, the date of revocation, and possibly various optional extras such
as the reason for the revocation.

Working with CRL’s
Individual revocation entries in a CRL are addressed through a certificate cursor
which functions in the same way as the certificate chain cursor discussed in “Working
with Certificate Chains” on page 117. Although a CRL appears as a single object, it
consists internally of a collection of certificate revocation entries which you can
move through using the following cursor movement codes:

Code Description

CRYPT_CURSOR_FIRST Move the cursor to the first entryin the CRL.

CRYPT_CURSOR_LAST Move the cursor to the last entry in the CRL.

CRYPT_CURSOR_NEXT Move the cursor to the next entry in the CRL.

CRYPT_CURSOR_PREV Move the cursor to the previous entry in the
CRL.

For example to move the cursor to the first entry in the CRL, you would use:

cryptSetAttribute(cryptCRL, CRYPT_CERTINFO_CURRENT_CERTIFICATE,
CRYPT_CURSOR_FIRST);

To advance the cursor to the next entry, you would use:

cryptSetAttribute(cryptCRL, CRYPT_CERTINFO_CURRENT_CERTIFICATE,
CRYPT_CURSOR_NEXT);

Since each revocation entry can have its own attributes, moving the entry cursor from
one entry to another can change the attributes which are visible. This means that if
you’re working with a particular entry, the attributes for that entry will be visible, but
attributes for other entries won’t be. To complicate this further, CRL’s can also
contain global attributes which apply to, and are visible for, all entries in the CRL.
cryptlib will automatically handle these for you, allowing access to all attributes (both
per-entry and global) which apply to the currently selected revocation entry.

Creating CRL’s
To create a CRL, you first create the CRL certificate object as usual and then push
one or more certificates to be revoked into it.

CRYPT_CERTIFICATE cryptCRL;

/* Create the (empty) CRL */
cryptCreateCert(&cryptCRL, CRYPT_CERTTYPE_CRL);

/* Add the certificates to be revoked */
cryptSetAttribute(cryptCRL, CRYPT_CERTINFO_CERTIFICATE, revokedCert1

);
cryptSetAttribute(cryptCRL, CRYPT_CERTINFO_CERTIFICATE, revokedCert2

);
/* ... */
cryptSetAttribute(cryptCRL, CRYPT_CERTINFO_CERTIFICATE, revokedCertN

);

/* Sign the CRL */
cryptSignCertificate(cryptCRL, caPrivateKey);

As has already been mentioned, you must be a CA in order to issue a CRL, and you
can only revoke certificates which you have issued using the certificate used to sign
the CRL (you can’t, for example, revoke a certificate issued by another CA, or revoke
a certificate issued with one CA certificate using a different CA certificate). If you
try to add certificates issued by multiple CA’s to a CRL, or try to sign a CRL with a
CA certificate which differs from the one which signed the certificates in the CRL,

Checking Certificates against CRL’s 125

cryptlib will return a CRYPT_ERROR_INVALID error to indicate that the certificate
you are trying to add to the CRL or sign the CRL with is from the wrong CA. To
reiterate: Every certificate in a given CRL must have been issued using the CA
certificate which is used to sign the CRL. If your CA uses multiple certificates (for
example a Class 1 certificate, a Class 2 certificate, and a Class 3 certificate) then it
must issue one CRL for each certificate class. cryptlib will perform the necessary
checking for you to ensure you don’t issue an invalid CRL.

Advanced CRL Creation
The code shown above creates a relatively straightforward, simple CRL with no extra
information included with the revocation. You can also include extra attributes such
as the time of the revocation (which may differ from the time the CRL was issued, if
you don’t specify a time cryptlib will use the CRL issuing time), the reason for the
revocation, and the various other CRL-specific information as described in
“Certificate Extensions” on page 97.

If you set a revocation time with no revoked certificates present in the CRL, cryptlib
will use this time for any certificates you add to the CRL for which you don’t
explicitly set the revocation time (so you can use this to set a default revocation time
for any certificates you add). If you set a revocation time and there are revoked
certificates present in the CRL, cryptlib will set the time for the currently selected
certificate, which will be either the last one added or the one selected with the
certificate cursor commands.

For example to revoke a list of certificates, setting the revocation date for each one
individually, you would use:

CRYPT_CERTIFICATE cryptCRL;

while(moreCerts)
{
CRYPT_CERTIFICATE revokedCert;
time_t revocationTime;

/* Get the certificate to revoke and its revocation time */
revokedCert = ...;
revocationTime = ...;

/* Add them to the CRL */
cryptSetAttribute(cryptCRL, CRYPT_CERTINFO_CERTIFICATE,

revokedCert);
cryptSetAttributeString(cryptCRL, CRYPT_CERTINFO_REVOCATIONDATE,

&revocationTime, sizeof(time_t));

/* Clean up */
cryptDestroyCert(revokedCert);
}

You can also add additional attributes such as the reason for the revocation to each
revoked certificate, a number of standards recommend that a reason is given for each
revocation. The revocation codes are specified in “Certificate Extensions” on page
97.

CRL’s can be signed, verified, imported, and exported just like other certificate
objects.

Checking Certificates against CRL’s
Verifying a certificate against a CRL with cryptCheckCert works just like a
standard certificate check, with the second parameter being the CRL which the
certificate is being checked against:

CRYPT_CERTIFICATE cryptCRL;

/* Check the certificate against the CRL */
cryptCheckCert(cryptCert, cryptCRL);

Maintaining Keys and Certificates126

If the certificate has been revoked, cryptlib will return CRYPT_ERROR_INVALID
and leave the certificates revocation entry in the CRL as the selected one, allowing
you to obtain further information on the revocation (for example the revocation date
or reason):

time_t revocationTime;
int revocationReason;

status = cryptCheckCert(cryptCert, cryptCRL);
if(status == CRYPT_INVALID)

{
int revocationTimeLength;

/* The certificate has been revoked, get the revocation time and
reason */

cryptGetAttributeString(cryptCRL, CRYPT_CERTINFO_REVOCATIONDATE,
&revocationTime, &revocationTimeLength);

cryptGetAttribute(cryptCRL, CRYPT_CERTINFO_CRLREASON,
&revocationReason);

}

Note that the revocation reason is an optional CRL component, so this may not be
present in the CRL (it rarely is in current CRL’s). If the revocation reason isn’t
present, cryptlib will return CRYPT_ERROR_NOTFOUND.

Automated CRL Checking
As you can see from the description of the revocation checking process above, it
quickly becomes unmanageable as the number of CRL’s and the size of each CRL
increases, since what should be a simple certificate validation check now involves
checking the certificate against any number of CRL’s (CRL’s are generally regarded
as a rather unsatisfactory solution to the problem of certificate revocation, but we’re
stuck with them for the forseeable future).

In order to ease this complex and long-winded checking process, cryptlib provides the
ability to automatically check a certificate against CRL’s stored in a cryptlib database
keyset. To do this you first need to write the CRL or CRL’s to the keyset as if they
were normal certificates, as explained in “Key Databases” on page 40. cryptlib will
take each complete CRL and record all of the individual revocations contained in it
for later use.

Once you have a keyset containing revocation information, you can use it to check
the validity of a certificate using cryptCheckCert, giving the keyset as the second
parameter:

CRYPT_KEYSET cryptKeyset;

/* Check the certificate using the keyset */
cryptCheckCert(cryptCert, cryptKeyset);

As with the check against a CRL, cryptlib will return CRYPT_ERROR_INVALID if
the certificate has been revoked.

This form of automated checking considerably simplifies the otherwise arbitrarily
complex CRL checking process since cryptlib can handle the check with a simple
keyset query rather than having to locate and search any number of CRL’s.

Certificate-like Object Structure 127

Further Certificate Objects
Alongside standard certificates, CRL’s, and certificate chains, cryptlib provides the
ability to work with other certificate-like objects which are used during the
certification process and in standards such as S/MIME which work with certificates.
These certificate-like objects aren’t signed like certificates but share most of the
properties of certificates and are manipulated in the same way as certificates.

The available certificate-like object types are:

Certificate Type Description

CRYPT_CERTTYPE_CMS_-
ATTRIBUTES

CMS/SMIME/PKCS #7 signature
attributes

These objects are created and destroyed in the standard manner usign
cryptCreateCert and cryptDestroyCert .

Certificate-like Object Structure
Like the standard certificate types, certificate-like objects have their own internal
structures which are encoded and decoded for you by cryptlib. Although cryptlib
provides the ability to control each certificate-like object in great detail if you require
this, in practice you should leave the handling of the details to cryptlib. If you don’t
fill in the non-mandatory fields, cryptlib will fill them in for you before it uses the
object.

CMS Attributes
CMS/SMIME/PKCS #7 signing attributes have the following structure:

Field Description

Attributes Signing attributes which allow extra information to be
included alongside signatures. These attributes work
like certificate extensions and are described in more
detail further on.

CMS Attributes
The S/MIME standards specify various attributes which can be included with
signatures. In addition there are a variety of proprietary and vendor-specific
attributes which are also handled by cryptlib. In the following description only the
generally useful fields have been described, the full range of fields is enormous and
requires a number of standards specifications (often followed by cries for help on
mailing lists) to interpret them. These fields are marked with “See S/MIME
standards documents” to indicate that you should refer to other documents to obtain
information about their use (this is also a good indication that you shouldn’t really be
using this attribute).

Content Type
This is a standard CMS attribute identified by CRYPT_CERTINFO_CMS_-
CONTENTTYPE and is used to specify the type of data which is being signed. This
is used because some signed information could be interpreted in different ways
depending on the data type it’s supposed to represent (for example something viewed
as encrypted data could be interpreted quite differently if viewed as plain data). If
you don’t set this attribute, cryptlib will set it for you and mark the signed content as
plain data.

Further Certificate Objects128

The content type CMS attribute can contain one of the following CRYPT_-
CONTENT_TYPE values:

Value Description

CRYPT_CONTENT_CMS_-
DATA

Plain data.

CRYPT_CONTENT_CMS_-
SIGNEDDATA

Signed data.

CRYPT_CONTENT_CMS_-
ENVELOPEDDATA

Data encrypted using a password or
public-key or conventional encryption.

CRYPT_CONTENT_CMS_-
SIGNEDANDENVELOPED-
DATA

Data which is both signed and enveloped
(this is an obsolete composite content
type which shouldn’t be used).

CRYPT_CONTENT_CMS_-
DIGESTEDDATA

Hashed data.

CRYPT_CONTENT_CMS_-
ENCRYPTEDDATA

Data encrypted directly with a session
key.

CRYPT_CONTENT_CMS_-
SPCINDIRECTDATA-
CONTEXT

Indirectly signed data used in
Authenticode signatures.

The distinction between the different types arises from the way they are specified in
the standards documents, as a rule of thumb if the data being signed is encrypted then
use CRYPT_CERTINFO_CMS_ENVELOPEDDATA (rather than
CRYPT_CERTINFO_CMS_ENCRYPTEDDATA, which is slightly different), if it’s
signed then use CRYPT_CERTINFO_CMS_SIGNEDDATA, and if it’s anything else
then use CRYPT_CERTINFO_CMS_DATA. For example to identify the data you’re
signing as encrypted data, you would use:

cryptSetAttribute(cmsAttributes, CRYPT_CERTINFO_CMS_CONTENTTYPE,
CRYPT_CONTENT_CMS_ENVELOPEDDATA);

If you’re generating the signature via the cryptlib enveloping code then cryptlib will
set the correct type for you so there’s no need to set it yourself.

Countersignature
This CMS attribute contains a second signature which countersigns one of the
signatures on the data (that is, it signs the other signature rather than the data). The
attribute is identified by CRYPT_CERTINFO_CMS_COUNTERSIGNATURE:

Attribute/Description Type

CRYPT_CERTINFO_CMS_COUNTERSIGNATURE Binary data
See S/MIME standards documents.

Message Digest
This read-only CMS attribute is used as part of the signing process and is generated
automatically by cryptlib. The attribute is identified by CRYPT_CERTINFO_-
CMS_MESSAGEDIGEST:

Extended CMS Attributes 129

Attribute/Description Type

CRYPT_CERTINFO_CMS_MESSAGEDIGEST Binary data
The hash of the content being signed.

Signing Time
This is a standard CMS attribute identified by CRYPT_CERTINFO_CMS_-
SIGNINGTIME and is used to specify the time at which the signature was generated.
If you don’t set this attribute, cryptlib will set it for you.

Attribute/Description Type

CRYPT_CERTINFO_CMS_SIGNINGTIME Binary data
The time at which the signature was generated, expressed in local time and
using the standard ANSI/ISO C seconds since 1970 format. This is a binary
data field, with the data being the timestamp value (in C and C++ this is a
time_t , usually a signed long integer).

Extended CMS Attributes
The attributes given above are the standard CMS attributes. Extending beyond this
are further attributes which are defined in additional standards documents and which
apply mostly to S/MIME messages, as well as vendor-specific and proprietary
attributes. Before you use these additional attributes you should ensure that any
software you plan to interoperate with can process them, since currently almost
nothing will recognise them (for example it’s not a good idea to put a security label
on your data and expect other software to handle it correctly).

AuthentiCode Attributes
AuthentiCode code-signing uses a number of of attributes which apply to signed
executable content. These attributes are listed below.

The agency information CMS attribute, identified by CRYPT_CERTINFO_CMS_-
SPCAGENCYINFO, is used to provide extra information about the signer of the data
and has the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_CMS_SPCAGENCYURL String
The URL of a web page containing more information about the signer.

The statement type CMS attribute, identified by CRYPT_CERTINFO_CMS_-
SPCSTATEMENTTYPE, is used to identify whether the content was signed by an
individual or a commercial organisation, and has the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_CMS_SPCSTMT_INDIVIDUAL-
CODESIGNING

String

The data was signed by an individual.

CRYPT_CERTINFO_CMS_SPCSTMT_COMMERCIAL-
CODESIGNING

The data was signed by a commercial organisation.

For example to indicate that the data was signed by an individual, you would use:

cryptSetAttribute(cmsAttributes,
CRYPT_CERTINFO_CMS_SPCSTMT_COMMERCIALCODESIGNING, CRYPT_UNUSED);

The opus information CMS attribute is an obsolete attribute which is included in
signatures for backwards-compatibility reasons. It is identified by CRYPT_-
CERTINFO_CMS_SPCOPUSINFO and appears as a single opaque object which has
a numeric value of ‘true’ (any nonzero value) to indicate that it is present in the

Further Certificate Objects130

collection of attributes. When you want to add this attribute, you should add it as a
numeric component with a value of ‘true’.

For example to create an AuthentiCode signature as a commercial organisation you
would use:

CRYPT_CERTIFICATE cmsAttributes;

/* Create the CMS attribute object and add the AuthentiCode attributes
*/

cryptCreateCert(&cmsAttributes, CRYPT_CERTTYPE_CMS_ATTRIBUTES);
cryptSetAttributeString(cmsAttributes,

CRYPT_CERTINFO_CMS_SPCAGENCYURL,
"http://homepage.organisation.com", 32);

cryptSetAttribute(cmsAttributes,
CRYPT_CERTINFO_CMS_SPCSTMT_COMMERCIALCODESIGNING, CRYPT_UNUSED);

cryptSetAttribute(cmsAttributes, CRYPT_CERTINFO_CMS_SPCOPUSINFO, 1);

/* Add the content-type required for AuthentiCode data */
cryptSetAttribute(cmsAttributes, CRYPT_CERTINFO_CMS_CONTENTTYPE,

CRYPT_CONTENT_SPCINDIRECTDATACONTEXT);

/* Sign the data with the attributes included */
cryptCreateSignatureEx(...);

cryptDestroyCert(cmsAttributes);

The other attributes used when signing are standard attributes which will be added
automatically for you by cryptlib.

Content Hints
This CMS attribute can be supplied in the outer layer of a multi-layer message to
provide information on what the innermost layer of the message contains. The
attribute is identified by CRYPT_CERTINFO_CMS_CONTENTHINTS and has the
following attributes:

Attribute/Description Type

CRYPT_CERTINFO_CMS_CONTENTHINT_-
DESCRIPTION

String

A human-readable description which may be useful when processing the
content.

CRYPT_CERTINFO_CMS_CONTENTHINT_TYPE Numeric
The type of the innermost content, specified as a CRYPT_CONTENT_-
content-type value.

Mail List Expansion History
This CMS attribute contains information on what happened to a message when it was
processed by mailing list software. It is identified by CRYPT_CERTINFO_CMS_-
MLEXPANSIONHISTORY and contains the following attributes:

Extended CMS Attributes 131

Attribute/Description Type

CRYPT_CERTINFO_CMS_MLEXP_ENTITYIDENTIFIER Binary data
See S/MIME standards documents.

CRYPT_CERTINFO_CMS_MLEXP_TIME Binary data
The time at which the mailing-list software processed the message,
expressed in local time and using the standard ANSI/ISO C seconds since
1970 format. This is a binary data field, with the data being the timestamp
value (in C and C++ this is a time_t , usually a signed long integer).

CRYPT_CERTINFO_CMS_MLEXP_NONE
CRYPT_CERTINFO_CMS_MLEXP_INSTEADOF
CRYPT_CERTINFO_CMS_MLEXP_INADDITIONTO

—
General-
Name

This field can have one of the three values specified above, and is used to
indicate a receipt policy which overrides the one given in the original
message. See the S/MIME standards documents for more information.

Receipt Request
This CMS attribute is used to request a receipt from the recipient of a message and is
identified by CRYPT_CERTINFO_CMS_RECEIPT_REQUEST. As with the
security label attribute, you shouldn’t rely on the recipient of a message being able to
do anything with this information, which consists of the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_CMS_RECEIPT_-
CONTENTIDENTIFIER

Binary data

A magic value used to identify a message, see the S/MIME standards
documents for more information.

CRYPT_CERTINFO_CMS_RECEIPT_FROM
CRYPT_CERTINFO_CMS_RECEIPT_TO

Numeric
General-
Name

An indication of who receipts should come from and who they should go to,
see the S/MIME standards documents for more information.

Security Label, Equivalent Label
These CMS attributes specify security information for the content contained in the
message, allowing recipients to decide how they should process it, for example an
implementation could refuse to display a message to a recipient who isn’t cleared to
see it (this assumes that the recipient software is implemented at least in part using
tamper-resistant hardware, since a pure software implementation could be set up to
ignore the security label). These attributes originate (in theory) in X.400 and (in
practice) in DMS, the US DoD secure email system, and virtually no implementations
outside this area understand them so you shouldn’t rely on them to ensure proper
processing of a message.

The basic security label on a message is identified by CRYPT_CERTINFO_CMS_-
SECURITYLABEL. Since different organisations have different ways of handling
security policies, their labelling schemes may differ, so the equivalent labels CMS
attribute, identified by CRYPT_CERTINFO_CMS_EQUIVALENTLABEL, can be
used to map from one to the other. These contain the following attributes:

Further Certificate Objects132

Attribute/Description Type

CRYPT_CERTINFO_CMS_SECLABEL_POLICY String
The object identifier for the security policy which the security label is issued
under.

CRYPT_CERTINFO_CMS_SECLABEL_-
CLASSIFICATION

Numeric

The security classification for the content identified relative to the security
policy being used. There are six standard classifications (described below)
and an extended number of user-defined classifications, for more
information see the S/MIME standards documents and X.411.

CRYPT_CERTINFO_CMS_SECLABEL_PRIVACYMARK Numeric
A privacy mark value which unlike the security classification isn’t used for
access control to the message contents. See S/MIME standards documents
for more information.

CRYPT_CERTINFO_CMS_SECLABEL_CATTYPE
CRYPT_CERTINFO_CMS_SECLABEL_CATVALUE

String
Binary data

See S/MIME standards documents.

The security classification can have one of the following predefined values (which
are relative to the security policy and whose interpretation can vary from one
organisation to another), or policy-specific, user-defined values which lie outside this
range:

Value

CRYPT_CLASSIFICATION_UNMARKED

CRYPT_CLASSIFICATION_UNCLASSIFIED

CRYPT_CLASSIFICATION_RESTRICTED

CRYPT_CLASSIFICATION_CONFIDENTIAL

CRYPT_CLASSIFICATION_SECRET

CRYPT_CLASSIFICATION_TOP_SECRET

S/MIME Capabilities
This CMS attribute provides additional information about the capabilities and
preferences of the sender of a message, allowing them to indicate their preferred
encryption algorithm(s) and . The attribute is identified by CRYPT_CERTINFO_-
CMS_SMIMECAPABILITIES and can contains any of the following values:

Value Description

CRYPT_CERTINFO_CMS_-
SMIMECAP_3DES

CRYPT_CERTINFO_CMS_-
SMIMECAP_CAST128

CRYPT_CERTINFO_CMS_-
SMIMECAP_DES

CRYPT_CERTINFO_CMS_-
SMIMECAP_IDEA

CRYPT_CERTINFO_CMS_-
SMIMECAP_RC2

CRYPT_CERTINFO_CMS_-
SMIMECAP_RC5

CRYPT_CERTINFO_CMS_-
SMIMECAP_SKIPJACK

The sender supports the use of these
algorithms. When encoding them,
cryptlib will order them by algorithm
strength so that triple DES will be
preferred over Skipjack which will be
preferred over DES.

Extended CMS Attributes 133

CRYPT_CERTINFO_CMS_-
SMIMECAP_-
PREFERSIGNEDDATA

The sender would prefer to be sent
signed data.

CRYPT_CERTINFO_CMS_-
SMIMECAP_-
CANNOTDECRYPTANY

The sender can’t handle any form of
encrypted data.

To indicate that you can support messages encrypted with triple DES and Cast-128,
you would use::

cryptSetAttribute(certificate, CRYPT_CERTINFO_CMS_SMIMECAP_3DES,
CRYPT_UNUSED);

cryptSetAttribute(certificate, CRYPT_CERTINFO_CMS_SMIMECAP_CAST128,
CRYPT_UNUSED);

If you’re using CRYPT_FORMAT_SMIME data, cryptlib will automatically add the
appropriate attributes for you so there’s normally no need to set these attributes
yourself.

Signing Certificate
This CMS attribute provides additional information about the certificate used to sign
a message, is identified by CRYPT_CERTINFO_SIGNINGCERTIFICATE, and
contains the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_CMS_SIGNINGCERT_CERTS Binary data
The SHA-1 hash of the signing certificate

CRYPT_CERTINFO_CMS_SIGNINGCERT_POLICIES String
The object identifier for the policy which applies to the signing certificate

S/MIME134

S/MIME
S/MIME is a standard format for transferring signed, encrypted, or otherwise
processed data as a MIME-encoded message (for example as email or embedded in a
web page). The MIME-encoding is only used to make the result palatable to mailers,
it’s also possible to process the data without the MIME encoding.

The exact data formatting and terminology used requires a bit of further explanation.
In the beginning there was PKCS #7, a standard format for signed, encrypted, or
otherwise processed data. When the earlier PEM secure mail standard failed to take
off, PKCS #7 was wrapped up in MIME encoding and christened S/MIME version 2.
Eventually PKCS #7 was extended to become the Cryptographic Message Syntax
(CMS), and when that’s wrapped in MIME it’s called S/MIME version 3.

In practice it’s somewhat more complicated than this since there’s significant blurring
between S/MIME version 2 and 3 (and PKCS #7 and CMS). The main effective
difference between the two is that PKCS #7/SMIME version 2 are completely tied to
X.509 certificates, certification authorities, certificate chains, and other paraphernalia,
CMS can be used without requiring all these extras if necessary, and S/MIME version
3 restricts CMS back to requiring X.509 for S/MIME version 2 compatibility.

The cryptlib native format is CMS used in the configuration which doesn’t tie it to the
use of certificates (so it’ll work with PGP keys, raw public/private keys, and other
keying information as well as with X.509 certificates). In addition to this format,
cryptlib also supports the S/MIME format which is tied to X.509 — this is just the
cryptlib native format restricted so that the full range of key management options
aren’t available. If you want to interoperate with other implementations, you should
use this format since many implementations can’t work with the newer key
management options which were added in CMS.

You can specify the use of the restricted CMS/SMIME format with the formatting
specifier CRYPT_FORMAT_CMS or CRYPT_FORMAT_SMIME (they’re almost
identical, the few minor differences are explained further on), which tells cryptlib to
use the restricted CMS/SMIME rather than the (default) unrestricted CMS format.
You can use the format specifiers with cryptExportKeyEx and
cryptCreateSignatureEx (which take as their third argument the format specifier)
and with cryptCreateEnvelope. The use of this format with the mid-level
encryption and signature functions is explained in more detail in
“Encrypting/Decrypting Data” on page 64 and “Signing Data” on page 72.

S/MIME Enveloping
Although it’s possible to use the S/MIME format directly with the mid-level signature
and encryption functions, S/MIME requires a considerable amount of extra
processing above and beyond that required by cryptlib’s default format, so it’s easiest
to let cryptlib take care of this extra work for you by using the enveloping functions
to process S/MIME data.

To create an envelope which uses the S/MIME format, call cryptCreateEnvelope as
usual but specify a format type of CRYPT_FORMAT_SMIME instead of the usual
CRYPT_FORMAT_CRYPTLIB:

CRYPT_ENVELOPE cryptEnvelope;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_SMIME);

/* Perform enveloping */

cryptDestroyEnvelope(cryptEnvelope);

Creating the envelope in this way restricts cryptlib to using the standard X.509-based
S/MIME data format instead of the more flexible data format which is used for
envelopes by default.

S/MIME Enveloping 135

Encrypted Enveloping
S/MIME supports password-based enveloping in the same way as ordinary cryptlib
envelopes (in fact the two formats are identical). Public-key encrypted enveloping is
supported only when the public key is held in an X.509 certificate, because of this
restriction the private decryption key must also have a certificate attached to it. Apart
from these restrictions, public-key based S/MIME enveloping also works the same
way as standard cryptlib enveloping. For example to encrypt data using the key
contained in an X.509 certificate you would use:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_SMIME);

/* Add the certificate */
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_PUBLICKEY, certificate

);

/* Add the data size information and data, push a zero-byte data block
to wrap up the enveloping, and pop out the processed data */

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DATASIZE,
messageLength);

cryptPushData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, envelopedData, envelopedDataBufferSize,

&bytesCopied);

cryptDestroyEnvelope(cryptEnvelope);

Since the certificate will originally come from a keyset, a simpler alternative to
reading the certificate yourself and explicitly adding it to the envelope is to let
cryptlib do it for you by first adding the keyset to the envelope and then specifying
the email address of the recipient or recipients of the message with the CRYPT_-
ENVINFO_RECIPIENT attribute:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_SMIME);

/* Add the encryption keyset and recipient email address */
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_KEYSET_ENCRYPT,

cryptKeyset);
cryptSetAttributeString(cryptEnvelope, CRYPT_ENVINFO_RECIPIENT,

"person@company.com", 18);

/* Add the data size information and data, push a zero-byte data block
to wrap up the enveloping, and pop out the processed data */

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DATASIZE,
messageLength);

cryptPushData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, envelopedData, envelopedDataBufferSize,

&bytesCopied);

cryptDestroyEnvelope(cryptEnvelope);

For each message recipient which you add, cryptlib will look up key in the encryption
keyset and add the appropriate information to the envelope to encrypt the message to
that person. This is the recommended way of handling public-key encrypted
enveloping, since it lets cryptlib handle the certificate details for you and makes it
possible to manage problem areas such as cases where the same email address is
present in multiple certificates of which only one is valid for message encryption. If
you wanted to handle this case yourself, you’d have to use cryptEnvelopeQuery to
search the duplicate certificates yourself as described in “Handling Multiple
Certificates with the Same Name” on page 56.

Deenveloping works as for standard enveloping:

CRYPT_ENVELOPE cryptEnvelope;
CRYPT_ENVINFO_TYPE requiredAttribute;

S/MIME136

int bytesCopied, status;

/* Create the envelope and add the private key keyset and data */
cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_KEYSET_DECRYPT,

privKeyKeyset);
cryptPushData(cryptEnvelope, envelopedData, envelopedDataLength,

&bytesCopied);

/* Find out what we need to continue and, if it's a private key, add
the password to recover it */

cryptGetAttribute(cryptEnvelope, CRYPT_ENVINFO_CURRENT_COMPONENT,
&requiredAttribute);

if(requiredResource != CRYPT_ENVINFO_PRIVATEKEY)
/* Error */

cryptAddAttributeString(cryptEnvelope, CRYPT_ENVINFO_PASSWORD,
password, passwordLength);

cryptPushData(cryptEnvelope, NULL, 0, NULL);

/* Pop the data and clean up */
cryptPopData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptDestroyEnvelope(cryptEnvelope);

More information on public-key encrypted enveloping, including its use with crypto
devices such as smart cards and Fortezza cards, is given in “Advanced Enveloping”
on page 32.

Digitally Signed Enveloping
Like public-key encrypted enveloping, digitally signed enveloping works just like
standard enveloping except that the signing key is restricted to one which has a full
chain of X.509 certificates (or at least a single certificate) attached to it. For example
if you wanted to sign data using a private key contained in sigKeyContext , you
would use:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_SMIME);

/* Add the signing key */
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_SIGNATURE,

sigKeyContext);

/* Add the data size information and data, push a zero-byte data block
to wrap up the enveloping, and pop out the processed data */

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DATASIZE,
messageLength);

cryptPushData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, envelopedData, envelopedDataBufferSize,

&bytesCopied);

cryptDestroyEnvelope(cryptEnvelope);

When you sign data in this manner, cryptlib includes any certificates attached to the
signing key alongside the message. Although you can sign a message using a key
with a single certificate attached to it, it’s safer to use one which has a full certificate
chain associated with it because including only the key certificate with the message
requires that the recipient locate any other certificates which are required to verify the
signature. Since there’s no easy way to do this, signing a message using only a
standalone certificate can cause problems when the recipient tries to verify the
signature.

Verifying the signature on the data works slightly differently from the normal
signature verification process since the signed data already carries with it the
complete certificate chain required to verify the signature. This means that you don’t
have to push a signature verification keyset or key into the envelope to verify the
signature because the required certificate is already included with the data:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied, sigCheckStatus;

S/MIME Enveloping 137

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);

/* Push in the enveloped data and pop out the recovered message */
cryptPushData(cryptEnvelope, envelopedData, envelopedDataLength,

&bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, message, messageBufferSize, &bytesCopied

);

/* Determine the result of the signature check */
cryptGetAttribute(cryptEnvelope, CRYPT_ENVINFO_SIGNATURE_RESULT,

&sigCheckStatus);

cryptDestroyEnvelope(cryptEnvelope);

Since the certificate is included with the data, anyone could alter the data, re-sign it
with their own certificate, and then attach their certificate to the data. To avoid this
problem, cryptlib provides the ability to verify the chain of certificates, which works
in combination with cryptlib’s certificate trust manager. You can obtain the
certificate object containing the signing certificate chain with:

CRYPT_CERTIFICATE cryptCertChain;

cryptGetAttribute(cryptEnvelope, CRYPT_SIGNATURE, &cryptCertChain);

You can work with this certificate chain as usual, for example you may want to
display the certificates and any related information to the user. At the least, you
should verify the chain using cryptCheckCert . More details on working with
certificate chains are given in “Maintaining Keys and Certificates” on page 114, and
details on signed enveloping (including its use with crypto devices like smart cards
and Fortezza cards) are given in “Advanced Enveloping” on page 32.

Detached Signatures
So far, the signature for the signed data has always been included with the data itself,
allowing it to be processed as a single blob. cryptlib also provides the ability to
create detached signatures in which the signature is held separate from the data. This
leaves the data being signed unchanged and produces a standalone signature as the
result of the encoding process.

To specify that an envelope should produce a detached signature rather than standard
signed data, you should add a CRYPT_ENVINFO_DETACHED_SIGNATURE
component to the envelope with the value set to ‘true’ (any nonzero value) before you
push in any data

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DETACHED_SIGNATURE, 1
);

Apart from that, the creation of detached signatures works just like the creation of
standard signed data, with the result of the enveloping process being the standalone
signature (without the data attached):

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_SMIME);

/* Add the signing key */
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_SIGNATURE,

sigKeyContext);

/* Add the data size information and data, push a zero-byte data block
to wrap up the enveloping, and pop out the detached signature */

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DATASIZE,
messageLength);

cryptPushData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, detachedSignature,

detachedSignatureBufferSize, &bytesCopied);

cryptDestroyEnvelope(cryptEnvelope);

S/MIME138

Verifying a detached signature requires an extra processing step, since the signature is
no longer bundled with the data. First, you need to push in the detached signature (to
tell cryptlib what to do with any following data). After you’ve pushed in the
signature and followed it up with the usual zero-byte push to wrap up the processing,
you need to push in the data which was signed by the detached signature as the
second processing step:

CRYPT_ENVELOPE cryptEnvelope;
int bytesCopied, sigCheckStatus;

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_AUTO);

/* Push in the detached signature */
cryptPushData(cryptEnvelope, detachedSignature, detachedSigLength);
cryptPushData(cryptEnvelope, NULL, 0, NULL);

/* Push in the data */
cryptPushData(cryptEnvelope, data, dataLength);
cryptPushData(cryptEnvelope, NULL, 0, NULL);

/* Determine the result of the signature check */
cryptGetAttribute(cryptEnvelope, CRYPT_ENVINFO_SIGNATURE_RESULT,

&sigCheckStatus);

cryptDestroyEnvelope(cryptEnvelope);

Since the data wasn’t enveloped to begin with, there’s nothing to deenvelope which
means there’s nothing to pop out of the envelope (apart from the signing certificate
chain which you can obtain as before by reading the CRYPT_ENVINFO_-
SIGNATURE attribute).

In case you’re not sure whether a signature includes data or not, you can query its
status by checking the value of the CRYPT_ENVINFO_DETACHED_SIGNATURE
attribute after you’ve pushed in the signature:

int isDetachedSignature;

/* Push in the signed enveloped data */
cryptPushData(cryptEnvelope, signedData, signedDataLength,

&bytesCopied);

/* Check the signed data type */
cryptGetAttribute(cryptEnvelope, CRYPT_ENVINFO_DETACHED_SIGNATURE, &

isDetachedSignature);
if(isDetachedSignature)

/* Detached signature */
else

/* Signed data + signature */

Extra Signature Information
S/MIME signatures can include with them extra information such as the time at
which the message was signed. Normally cryptlib will add and verify this
information for you automatically, however you can also handle it yourself if you
require extra control over what’s included with the signature. The extra information
is specified as a CRYPT_CERTTYPE_CMS_ATTRIBUTES certificate object which
is described in more detail in “Further Certificate Objects” on page 124. To include
this information with the signature you should add it to the envelope alongside the
signing key as CRYPT_ENVINFO_SIGNATURE_EXTRADATA:

CRYPT_ENVELOPE cryptEnvelope;
CRYPT_CERTIFICATE cmsAttributes;

/* Create the CMS attribute object */
cryptCreateCert(&cmsAttributes, CRYPT_CERTTYPE_CMS_ATTRIBUTES);
/* ... */

/* Create the envelope and add the signing key and signature
information */

cryptCreateEnvelope(&cryptEnvelope, CRYPT_FORMAT_CMS);
cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_SIGNATURE,

signatureKeyContext);

From Envelopes to S/MIME 139

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_SIGNATURE_EXTRADATA,
cmsAttributes);

cryptDestroyCert(cmsAttributes);

/* Add the data size information and data, push a zero-byte data block
to wrap up the enveloping, and pop out the processed data */

cryptSetAttribute(cryptEnvelope, CRYPT_ENVINFO_DATASIZE,
messageLength);

cryptPushData(cryptEnvelope, message, messageLength, &bytesCopied);
cryptPushData(cryptEnvelope, NULL, 0, NULL);
cryptPopData(cryptEnvelope, envelopedData, envelopedDataBufferSize,

&bytesCopied);

cryptDestroyEnvelope(cryptEnvelope);

Verifying a signature which includes this extra information works just like standard
signature verification since cryptlib handles it all for you. Just as you can obtain a
certificate chain from a signature, you can also obtain the extra signature information
from the envelope:

CRYPT_CERTIFICATE cmsAttributes;

cryptGetAttribute(cryptEnvelope, CRYPT_ENVINFO_SIGNATURE_EXTRADATA,
&cmsAttributes);

You can now work with the signing attributes as usual, for example you may want to
display any relevant information to the user. More details on working with signature
attributes are given in “Further Certificate Objects” on page 124.

The example above created a CRYPT_FORMAT_CMS envelope which means that
cryptlib will add certain default signing attributes to the signature when it creates it.
If the envelope is created with CRYPT_FORMAT_SMIME instead of
CRYPT_FORMAT_CMS, cryptlib will add an extra set of S/MIME-specific
attributes which indicate the preferred encryption algorithms for use when an
S/MIME enabled mailer is used to send mail to the signer. This information is used
for backwards-compatibility reasons because most S/MIME mailers will quietly
default to using very weak 40-bit keys if they’re not explicitly told to use proper
encryption such as triple DES (cryptlib will never use weakened encryption since it
doesn’t even provide this capability).

Because of this default-to-insecure encryption problem, cryptlib includes with a
CRYPT_FORMAT_SMIME signature additional information to indicate that the
sender should use a non-weakened algorithm such as triple DES, CAST-128, or
IDEA. With a CRYPT_FORMAT_CMS signature this additional S/MIME-specific
information isn’t needed so cryptlib doesn’t include it.

From Envelopes to S/MIME
The enveloping process produces binary data as output which then needs to be
wrapped up in the appropriate MIME headers and formatting before it can really be
called S/MIME. The exact mechanisms used depend on the mailer code or software
interface to the mail system you’re using, general guidelines for the different
enveloped data types are given below.

S/MIME Content Types
MIME is the Internet standard for communicating complex data types via email, and
provides for tagging of message contents and safe encoding of data to allow it to pass
over data paths which would otherwise damage or alter the message contents. Each
MIME message has a top-level type, subtype, and optional parameters. The top-level
types are application , audio , image , message , multipart , text , and
video .

Most of the S/MIME secured types have a content type of application/pkcs7-
mime, except for detached signatures which have a content type of
application/pkcs7-signature . The content type usually also includes an
additional smime-type parameter whose value depends on the S/MIME type and is

S/MIME140

described in further detail below. In addition it’s usual to include a content-
disposition field whose value is also explained below.

Since MIME messages are commonly transferred via email and this doesn’t handle
the binary data produced by cryptlibs enveloping, MIME also defines a means of
encoding binary data as text. This is known as content-transfer-encoding.

Data
The innermost, plain data content should be converted to canonical MIME format and
have a standard MIME header which is appropriate to the data content, with optional
encoding as required. For the most common type of content (plain text), the header
would have a content-type of text/plain , and possibly optional extra information
such as a content transfer encoding (in this case quoted-printable), content
disposition, and whatever other MIME headers are appropriate. This formatting is
normally handled for you by the mailer code or software interface to the mail system
you’re using.

Signed Data

For signed data the MIME type is application/pkcs7-mime , the smime-type
parameter is signed-data , and the extensions for filenames specified as
parameters is .p7m . A typical MIME header for signed data is therefore:

Content-Type: application/pkcs7-mime; smime-type=signed-data;
name=smime.p7m

Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m

encoded signed data

Detached Signature
Detached signatures represent a special instance of signed data in which the data to be
signed is carried as one MIME body part and the signature is carried as another body
part. The message is encoded as a multipart MIME message with the overall message
having a content type of multipart/signed and a protocol parameter of
application/pkcs7-signature , and the signature part having a content type
of application/pkcs7-signature .

Since the data precedes the signature, it’s useful to include the hash algorithm used
for the data as a parameter with the content type (cryptlib processes the signature
before the data so it doesn’t require it, but other implementations may not be able to
do this). The hash algorithm parameter is given by micalg=sha1 or
micalg=md5 as appropriate. When receiving S/MIME messages you can ignore
this value since cryptlib will automatically use the correct type based on the
signature.

A typical MIME header for a detached signature is therefore:

Content-Type: multipart/signed; protocol=application/pkcs7-signature;
micalg=sha1; boundary=boundary

--boundary
Content-Type: text/plain Content-Transfer-Encoding: quoted-printable

signed text

--boundary
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s

encoded signature

--boundary—

Implementing S/MIME using cryptlib 141

Encrypted Data

For encrypted data the MIME type is application/pkcs7-mime , the smime-
type parameter is enveloped-data , and the extension for filenames specified as
parameters is .p7m . A typical MIME header for encrypted data is therefore:

Content-Type: application/pkcs7-mime; smime-type=enveloped-data;
name=smime.p7m

Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m

encoded encrypted data

Nested Content
Unlike straight CMS nested content, S/MIME nested content requires a new level of
MIME encoding for each nesting level. For the minimum level of nesting (straight
signed or encrypted data) you need to first MIME-encode the plain data, then
envelope it to create CMS signed or encrypted data, and then MIME-encode it again.
For the typical case of signed, encrypted data you need to MIME-encode, sign,
MIME-encode again, encrypt, and then MIME-encode yet again (rumours that
S/MIME was designed by a consortium of network bandwidth vendors and disk drive
manufacturers are probably unfounded).

Since the nesting information is contained in the MIME headers, you don’t have to
specify the nested content type using CRYPT_ENVINO_CONTENTTYPE as you do
with straight CMS enveloped data (this is one of the few actual differences between
CRYPT_FORMAT_CMS and CRYPT_FORMAT_SMIME), cryptlib will
automatically set the correct content type for you. Conversely, you need to use the
MIME header information rather than CRYPT_ENVINFO_CONTENTTYPE when
deenveloping data (this will normally handled for you by the mailer code or software
interface to the mail system you’re using).

Implementing S/MIME using cryptlib
Most of the MIME processing and encoding issues described above will be handled
for you by the mail software which cryptlib is used with. To use cryptlib to handle
S/MIME messages, you would typically register the various S/MIME types with the
mail software and, when they are encountered, the mailer will hand the message
content (the data which remains after the MIME wrapper has been removed) to
cryptlib. cryptlib can then process the data and hand the processed result back to the
mailer. The same applies for generating S/MIME messages.

Example: c-client/IMAP4
c-client is a portable Swiss army chainsaw interface to a wide variety of mail and
news handling systems. One of the services it provides is full handling of MIME
message parts which involves breaking a message down into a sequence of BODY
structures each of which contains one MIME body part. The type member contains
the content type (typically TYPEMULTIPART or TYPEAPPLICATION for the
types used in S/MIME), the subtype member contains the MIME subtype, the
parameter list contains any required parameters, and the contents.binary
member contains outgoing binary data straight from the cryptlib envelope (c-client
will perform any necessary encoding such as base64 if required). All of this
information is converted into an appropriately-formatted MIME message by c-client
before transmission.

Since IMAP supports the fetching of individual MIME body parts from a server,
contents.binary can’t be used to access incoming message data since only the
header information may have been fetched, with the actual content still residing on
the server. To fetch a particular body part, you need to use mail_fetchbody . If
the body part is base64-encoded (denoted by the encoding member of the BODY
having the value ENCBASE64) then you also need to call rfc822_base64 to

S/MIME142

decode the data so cryptlib can process it. In the unlikely event that the binary data is
encoded as quoted-printable (denoted by ENCQUOTEDPRINTABLE, at least one
broken mailer occasionally does this) you need to call rfc822_qprint instead. In
either case the output can be pushed straight into a cryptlib envelope.

Example: Eudora
Eudora handles MIME content types through plug-in translators which are called
through two functions, ems_can_translate and ems_translate_file .
Eudora calls ems_can_translate with an emsMIMEtype parameter which
contains information on the MIME type contained in the message. If this is an
S/MIME type (for example application/pkcs7-mime) the function should
return EMSR_NOW to indicate that it can process this MIME type, otherwise is returns
EMSR_CANT_TRANSLATE.

Once the translator has indicated that it can process a message, Eudora calls
ems_translate_file with input and output files to read the data from and write
the processed result to. The translation is just the standard cryptlib enveloping or
deenveloping process depending on whether the translator is an on-arrival or on-
display one (used for deenveloping incoming messages) or a Q4-transmission or Q4-
completion one (used for enveloping outgoing messages).

Example: MAPI
MAPI (Microsoft’s mail API) defines two types of mailer extensions which allow
cryptlib-based S/MIME functionality to be added to Windows mail applications. The
first type is a spooler hook or hook provider, which can be called on delivery of
incoming messages and on transmission of outgoing messages. The second type is a
preprocessor, which is less useful and operates on outgoing messages only. The
major difference between the two in terms of implementation complexity is that hook
providers are full (although simple) MAPI service providers while preprocessors are
extensions to transport providers (that is, if you’ve already written a transport
provider you can add the preprocessor without too much effort; if you don’t have a
transport provider available, it’s quite a bit more work). In general it’s probably
easiest to use a single spooler hook to handle inbound and outbound messages. You
can do this by setting both the HOOK_INBOUND and HOOK_OUTBOUND flags in
the hook’s PR_RESOURCE_FLAGS value.

Messages are passed to hooks via ISpoolerHook::OutboundMsgHook (for
outgoing messages) and ISpoolerHook::InboundMsgHook (for incoming
messages). The hook implementation itself is contained in a DLL which contains the
HPProviderInit entry point and optional further entry points used to configure it
(for example a message service entry point for program-based configuration and a
WIZARDENTRY for user-based configuration).

Example: Windows’95/98 and NT Shell
Windows allows a given MIME content type to be associated with an application to
process it. You can set up this association by calling MIMEAssociationDialog
and setting the MIMEASSOCDLG_FL_REGISTER_ASSOC flag in the
dwInFlags parameter, which will (provided the user approves it) create an
association between the content type you specify in the pcszMIMEContentType
parameter and the application chosen by the user. This provides a somewhat crude
but easy to set up mechanism for processing S/MIME data using a cryptlib-based
application.

Creating/Destroying Device Objects 143

Encryption Devices and Modules
cryptlib’s standard cryptographic functionality is provided through its built-in
implementations of the required algorithms and mechanisms, however in some cases
it may be desirable to use external implementations contained in cryptographic
hardware or portable cryptographic devices like smart cards or PCMCIA cards.
Examples of external implementations are:

• Cryptographic hardware accelerators

• PCMCIA crypto cards such as Fortezza cards

• Cryptographic smart cards

• Datakeys

• PKCS #11 crypto tokens

• Dallas iButtons

• Software encryption modules

The most common use for an external implementation is one where the hardware
provides secure key storage and management functions, or where it provides specific
algorithms or performance which may not be available in software.

Using an external implementation involves conceptually plugging in the external
hardware or software alongside the built-in capabilties provided by cryptlib and then
creating cryptlib objects (for example encryption contexts) via the device. The
external cryptographic implementation is viewed as a logical device, although the
“device” may be just another software implementation.

Creating/Destroying Device Objects
Devices are accessed as device objects which work in the same general manner as
other cryptlib objects. You open a connection to a device using cryptDeviceOpen,
specifying the type of device you want to use and the name of the particular device if
required or null of there’s only one device type possible. This opens a connection to
the device. Once you’ve finished with the device, you use cryptDeviceClose to sever
the connection and destroy the device object:

CRYPT_DEVICE cryptDevice;

cryptDeviceOpen(&cryptDevice, deviceType, deviceName);

/* Use the services provided by the device */

cryptDeviceClose(cryptDevice);

The available device types are:

Device Description

CRYPT_DEVICE_FORTEZZA Fortezza PCMCIA card.

CRYPT_DEVICE_PKCS11 PKCS #11 crypto token. These devices
are accessed via their names, see the
section on PKCS #11 devices for more
details.

Most of the devices are identified implicitly so there’s no need to specify a device
name and you can pass null as the name parameter (the exception is PKCS #11
devices, which are covered in more detail further on). Once you’ve finished with the
device, you use cryptDeviceClose to deactivate it and destroy the device object. For
example to work with a Fortezza card you would use:

CRYPT_DEVICE cryptDevice;

Encryption Devices and Modules144

cryptDeviceOpen(&cryptDevice, CRYPT_DEVICE_FORTEZZA, NULL);

/* Use the services provided by the device */

cryptDeviceClose(cryptDevice);

If the device can’t be accessed, cryptlib will return CRYPT_ERROR_OPEN to
indicate that it couldn’t establish a connection and activate the device. Note that the
CRYPT_DEVICE is passed to cryptDeviceOpen by reference, as it modifies it when
it activates the device. In all other routines in cryptlib, CRYPT_DEVICE is passed
by value.

Activating and Controlling Cryptographic Devices
Once cryptlib has established a connection to the device, you may need to
authenticate yourself to it or perform some other control function with it before it will
allow itself to be used. You can do this by setting various device attributes,
specifying the type of action you want to perform on the device and any additional
information which may be required. In the case of user authentication, the additional
information will consist of a PIN or password which enables access. Many devices
recognise two types of access code, a user-level code which provides standard access
(for example for encryption or signing) and a supervisor-level code which provides
extended access to device control functions, for example key generation and loading.
An example of someone who may require supervisor-level access is a site security
officer (SSO) who can load new keys into a device or reenable its use after a user has
been locked out.

The control functions you can perform are as follows.

Initialise Device
By setting the CRYPT_DEVINFO_INITIALISE attribute, you can initialise the
device. This clears keys and other information in the device and prepares it for use.
In devices which support supervisor access you need to supply the initial supervisor
PIN when you call this function:

cryptSetAttributeString(cryptDevice, CRYPT_DEVINFO_INITIALISE,
initialPin, initialPinLength);

User Authentication
Before you can use the device you generally need to authenticate yourself to it with a
PIN or password. To authenticate yourself as supervisor, set the CRYPT_-
DEVINFO_AUTHENT_SUPERVISOR attribute; to authenticate yourself as user, set
the CRYPT_DEVINFO_AUTHENT_USER attribute. For example to authenticate
yourself to the device using a PIN as a normal user you would use:

cryptSetAttributeString(cryptDevice, CRYPT_DEVINFO_AUTHENT_USER, pin,
pinLength);

To authenticate yourself to the device using a PIN for supervisor-level access you
would use:

cryptSetAttributeString(cryptDevice,
CRYPT_DEVINFO_AUTHENT_SUPERVISOR, pin, pinLength);

If the PIN or password you’ve supplied is incorrect, cryptlib will return
CRYPT_ERROR_WRONGKEY. If the device doesn’t support this type of access, it
will return CRYPT_ERROR_PARAM2. Note that, as is traditional for most PIN and
password checking systems, some devices may only allow a limited number of access
attempts before locking out the user, requiring CRYPT_DEVINFO_AUTHENT_-
SUPERVISOR access to reenable user access.

Zeroise Device
The CRYPT_DEVINFO_ZEROISE attribute works much like CRYPT_DEVINFO_-
INITIALISE except that its specific goal is to clear any sensitive information such as

Extended Device Control Functions 145

encryption keys from the device (it’s often the same as device initialisation, but
sometimes will only specifically erase the keys and in some cases may even disable
the device). In devices which support supervisor access you need to supply the initial
supervisor PIN when you call this function, otherwise you should set the data value to
null and the length to CRYPT_UNUSED:

cryptSetAttributeString(cryptDevice, CRYPT_DEVINFO_INITIALISE, NULL,
CRYPT_UNUSED);

Extended Device Control Functions
Some device control functions may require more than a single parameter. You can
perform these functions using cryptDeviceControlEx.

Setting/Changing User Authentication Values
You can set or change a user authentication value such as a password or PIN with
CRYPT_DEVINFO_SET_AUTHENT_SUPERVISOR (for the supervisor
authentication value) or CRYPT_DEVINFO_SET_AUTHENT_USER (for the user
authentication value), specifying the current and new authentication values:

cryptDeviceControlEx(cryptDevice, CRYPT_DEVINFO_SET_AUTHENT_USER,
currentPin, currentPinLength, newPin, newPinLength);

Working with Device Objects
With the device activated and the user authenticated, you can use its cryptographic
capabilities in encryption contexts as if it were a standard part of cryptlib. In order to
specify the use of the cryptographic device rather than cryptlibs built-in functionality,
cryptlib provides the cryptDeviceCreateContext and cryptDeviceQueryCapability
functions which are identical to cryptCreateContext and cryptQueryCapability but
take as an additional argument the handle to the device. For example to create a
standard RSA encryption context you would use:

cryptCreateContext(&cryptContext, CRYPT_ALGO_RSA);

To create an RSA encryption context using an external cryptographic device you
would use:

cryptDeviceCreateContext(cryptDevice, &cryptContext, CRYPT_ALGO_RSA
);

After this you can use the encryption context as usual, both will function in an
identical manner with cryptlib keeping track of whether the implementation is via the
built-in functionality or the external device. In this way the use of any form of
external hardware for encryption is completely transparent after the initial step of
activating and initialising the hardware.

For an example of how you might utilise external hardware, let’s use a generic
DES/triple DES hardware accelerator (identified by the label “DES/3DES
accelerator”) accessed as a PKS #11 device. To use the triple DES hardware instead
of cryptlibs built-in triple DES implementation you would use:

CRYPT_DEVICE cryptDevice;
CRYPT_CONTEXT cryptContext;

/* Activate the DES hardware and create a context in it */
cryptDeviceOpen(&cryptDevice, CRYPT_DEVICE_PKCS11, "DES/3DES

accelerator");
cryptDeviceCreateContext(cryptDevice, &cryptContext, CRYPT_ALGO_3DES

);

/* Generate a key in the DES hardware */
cryptGenerateKey(cryptContext);

/* Encrypt data using the hardware */
cryptEncrypt(cryptContext, data, dataLength);

/* Destroy the context and shut down the DES hardware */

Encryption Devices and Modules146

cryptDestroyContext(cryptContext);
cryptDeviceClose(cryptDevice);

After the context has been created with cryptDeviceCreateContext, the use of the
context is identical to a standard encryption context. There is no other (perceptual)
difference between the use of a built-in implementation and an external
implementation.

Key Storage in Crypto Devices
When you create a normal public-key context and load or generate a key into it, the
context goes away when you destroy it or shut down cryptlib. If the context is
created in a crypto device, the public and private keys from the context don’t go away
when the context is destroyed but are stored inside the device for later use. You can
later recreate the context using the key stored in the device by treating the device as a
keyset containing a stored key. For example to create an RSA key in a device you
would use:

CRYPT_CONTEXT privKeyContext;

/* Create the RSA context, set a label for the key, and generate a key
into it */

cryptCreateContext(&privKeyContext, CRYPT_ALGO_RSA);
cryptSetAttributeString(privKeyContext, CRYPT_CTXINFO_LABEL, label,

labelLength);
cryptGenerateKey(privKeyContext);

/* Destroy the context */
cryptDestroyContext(privKeyContext);

Although the context has been destroyed, the key itself is still held inside the device.
To recreate the context at a later date, you can treat the device as if it were a keyset,
using the label as the key ID:

CRYPT_CONTEXT privKeyContext;

cryptGetPrivateKey(cryptDevice, &privKeyContext, CRYPT_KEYID_NAME,
label, NULL);

Since you’ve already authenticated yourself to the device, you don’t need to specify a
password.

Considerations when Working with Devices
There are several considerations to be taken into account when using crypto devices,
the major one being that requiring that crypto hardware be present in a system
automatically limits the flexibility of your application. There are some cases where
the use of certain types of hardware (for example Fortezza cards) may be required,
but in many instances the reliance on specialised hardware can be a drawback.

The use of hardware crypto implementations can also complicate key management,
since keys generated or loaded into the hardware usually can’t be extracted again
afterwards (this is a security feature of the hardware which makes external access to
the key impossible, and works in the same way as cryptlib’s own storing of keys
inside it’s security perimeter). This means that if you have a crypto device which
supports (say) DES and RSA encryption, then to export an encrypted DES key from a
context stored in the device, you need to use an RSA context also stored inside the
device, since a context located outside the device won’t have access to the DES
context’s key.

Another consideration which needs to be taken into account is the data processing
speed of the device. In many cases it is preferable to use cryptlibs built-in
implementation of an algorithm rather than the one provided by the device, especially
where security isn’t a major concern. For example when hashing data prior to signing
it, cryptlibs built-in hashing capabilities should be used in preference to any provided
by the device, since cryptlib can process data at the full memory bandwidth using a
processor typically clocked at hundreds of megahertz while a crypto device has to
move data over a slow I/O bus to be processed by a processor typically clocked at

Fortezza Cards 147

tens of megahertz or even a few megahertz. In addition when encrypting or
decrypting sizeable amounts of data using one-off session keys (as opposed to long-
term keys used for multiple lots of data, which are usually stored securely inside the
device) it may be preferable to use cryptlibs high-speed encryption capabilities,
particularly with devices such as smart cards and to a lesser extent PCMCIA cards,
which are severely limited by their slow I/O throughput.

A final consideration concerns the limitations of the encryption engine in the device
itself. Although cryptlib provides a great deal of flexibility in its software crypto
implementations, most hardware devices have only a single encryption engine
(possibly augmented by the ability to store multiple encryption keys in the device)
through which all data must pass. What this means is that each time a different key is
used, it has to be loaded into the device’s encryption engine before it can be used to
encrypt or decrypt data, a potentially time-consuming process. For example if two
encryption contexts are created via a device and both are used alternately to encrypt
data, the key corresponding to each context has to be loaded by the device into its
encryption engine before the encryption can begin (while most devices can store
multiple keys, few can keep more than one at a time ready for use in their encryption
engine).

What this means is that although cryptlib will allow you to create as many contexts
via a device as the hardware allows, it’s generally not a good idea to have more than a
single context of each type in use at any one time. For example you could have a
single conventional encryption context (using the devices crypto engine), a single
digital signature context (using the devices public-key engine), and a single hash
context (using the devices CPU, or preferably cryptlib itself) active, but not two
conventional encryption contexts (which would have to share the encryption engine)
or two digital signature contexts (which would have to share the public-key engine).

Fortezza Cards
cryptlib provides compete Fortezza card management capabilities, allowing you to
initialise and program a card, generate or load keys into it, add certificates for the
generated/loaded keys, update and change PINs, and perform other management
functions. This provides full certificate authority workstation (CAW) capabilities.

The steps involved in programming a blank Fortezza card involve zeroising it (to
erase any existing information, returning it to its factory-fresh status), initialising it
with the default SSO PIN, changing the SSO PIN from the default setting to the
actual SSO PIN, installing the CA root (PAA) certificate in the card, and finally
setting the user PIN. This can be done using the following code:

CRYPT_DEVICE cryptDevice;

cryptDeviceOpen(&cryptDevice, CRYPT_DEVICE_FORTEZZA, NULL);

/* Zeroise the card, erasing any existing information */
cryptSetAttributeString(cryptDevice, CRYPT_DEVINFO_ZEROISE,

zeroisePIN, strlen(zeroisePIN));

/* Initialise the card and set the SSO PIN*/
cryptSetAttributeString(cryptDevice, CRYPT_DEVINFO_INITIALISE,

defaultSSOPIN, strlen(defaultSSOPIN));
cryptDeviceControlEx(cryptDevice,

CRYPT_DEVINFO_SET_AUTHENT_SUPERVISOR, defaultSSOPIN, strlen(
defaultSSOPIN), ssoPIN, strlen(ssoPIN));

/* Install the CA root (PAA) certificate */
cryptAddPublicKey(cryptDevice, cryptCert);

/* Set the user PIN */
cryptDeviceControlEx(cryptDevice, CRYPT_DEVINFO_SET_AUTHENT_USER,

userPIN, strlen(userPIN), userPIN, strlen(userPIN));

cryptDeviceClose(cryptDevice);

Encryption Devices and Modules148

Note that the Fortezza control firmware requires that these steps be performed in a
continuous sequence of operations, without removing the card or closing the device.
If you interrupt the process halfway through, you need to start again.

After the above programming process has completed, you can generate further keys
into the device, load certificates, and so on. This provides the same functionality as a
CAW.

PKCS #11 Devices
Although most of the devices which cryptlib interfaces with have specialised, single-
purpose interfaces, PKCS #11 provides a general-purpose interface which can be
used with a wide selection of parameters and in a variety of ways. The following
section covers the installation of PKCS #11 modules and documents the way in which
cryptlib interfaces to PKCS #11 modules.

Installing New PKCS #11 Modules
You can install new PKCS #11 modules by setting the names of the drivers in
cryptlibs configuration database. The module names are specified using the
configuration options CRYPT_OPTION_DEVICE_PKCS11_DVR01 ...
CRYPT_OPTION_DEVICE_PKCS11_DVR05, cryptlib will step through the list and
load each module in turn. For example to use the Gemplus GemSAFE driver, you
would use:

cryptSetAttributeString(CRYPT_UNUSED,
CRYPT_OPTION_DEVICE_PKCS11_DVR01, "w32pk2ig.dll", 12);

On startup, cryptlib will load the specified modules and make them available as
CRYPT_DEVICE_PKCS11 devices. When the module is loaded, cryptlib will query
each module for the device name, this is the name which you should use to access it
using cryptDeviceOpen.

Since the drivers are dynamically loaded on startup by cryptlib, specifying a driver as
a configuration option won’t immediately make it available for use. To make the
driver available, you have to restart cryptlib or the application using it so that cryptlib
can load the driver on startup.

Accessing PKCS #11 Devices
PKCS #11 devices are identified by the device name, for example the Litronix PKCS
#11 driver indentifies itself as “Litronix CryptOki Interface” so you would create a
device object of this type with:

CRYPT_DEVICE cryptDevice;

cryptDeviceOpen(&cryptDevice, CRYPT_DEVICE_PKCS11, "Litronix CryptOki
Interface");

Some PKCS #11 devices allow the use of multiple physical or logical crypto tokens
as part of a single device (for example a smart card reader device might have two
slots which can each contain a smart card, or the reader itself might function as a
crypto token alongside the smart card which is inserted into it). To identify a
particular token in a device, you can specify its name after the device name, separated
with a double colon. For example if the Litronix reader given in the example above
contained two smart cards, you would access the one called “Signing smart card”
with:

CRYPT_DEVICE cryptDevice;

cryptDeviceOpen(&cryptDevice, CRYPT_DEVICE_PKCS11, "Litronix CryptOki
Interface::Signing smart card ");

PKCS #11 Devices 149

PKCS #11 Functions used by cryptlib

When loading a PKCS #11 module, cryptlib calls C_Initialize with a null
parameter and then calls C_GetTokenInfo to obtain information about the device
and C_GetSlotList to obtain details on the modules’ slots. Before it unloads the
module it calls C_Finalize .

When creating a device object, cryptlib calls C_OpenSession followed by
C_GetTokenInfo to obtain information on a device such as whether it has its own
random number generation capabilities. After this it calls C_GetMechanismInfo
for each encryption capability required by cryptlib to allow the later creation of
encryption contexts. cryptlib always opens serial sessions with the device since it
does its own thread locking, so there’s no need to support any complex locking
capabilities.

When destroying a device object, cryptlib calls C_Logout (if necessary) followed
by C_CloseSession to shut down the session. To perform encryption and
signing, cryptlib calls the various PKCS #11 functions which are required for this
purpose. These are C_SignInit , C_Sign , C_VerifyInit , C_Verify ,
C_EncryptInit , C_Encrypt , C_DecryptInit , and C_Decrypt depending
on the function which is being performed. In addition cryptlib calls
C_CreateObject or C_GenerateKeyPair as appropriate to load or generate
keys, C_FindObjectsInit , C_FindObjects , and C_FindObjectsFinal
to find objects in the device, and C_GetAttributeValue and
C_GetAttributeValue to read and write object attributes. cryptlib will also call
C_GenerateRanom if the device provides this functionality to augment its own
built-in random number generation routines.

Alongside the encryption and signing functions, cryptlib may call a number of
additional functions related to device management to handle device control functions.
For example it will call C_Login and C_Logout to handle CRYPT_DEVINFO_-
AUTHENT_USER and CRYPT_DEVINFO_AUTHENT_SUPERVISOR, and
C_InitToken and C_InitToken to handle CRYPT_DEVINFO_INITIALISE
and CRYPT_DEVINFO_ZEROISE.

In general, cryptlib has been designed to require as few specialised support functions
from the underlying hardware as possible. In the case of PKCS #11 this means it will
perform its own thread locking, device capability management, and so on, which
means that it should handle even minimal PKCS #11 implementations.

Miscellaneous Topics150

Miscellaneous Topics
This chapter covers various miscellaneous topics not covered in other chapters such
as how to obtain information about the encryption capabilities provided by cryptlib,
how to obtain information about a particular encryption context, and how to ensure
that your code takes advantage of new encryption capabilities provided with future
versions of cryptlib.

Querying cryptlib’s Capabilities
cryptlib provides two functions to query encryption capabilities, one of which returns
information about a given algorithm and mode and the other which returns
information on the algorithm and mode used in an encryption context. In both cases
the information returned is in the form of a CRYPT_QUERY_INFO structure, which
is described in “Data Structures” on page 173.

You can interrogate cryptlib about the details of a particular encryption algorithm and
mode using cryptQueryCapability :

CRYPT_QUERY_INFO cryptQueryInfo;

cryptQueryCapability(algorithm, mode, &cryptQueryInfo);

This function will return a status of CRYPT_OK if the algorithm and mode are
available or CRYPT_ERROR_NOTAVAIL if they aren’t. If you just want to check
whether a particular algorithm and more are available (without obtaining further
information on them), you can set the query information parameter to null:

cryptQueryCapability(algorithm, mode, NULL);

This will return CRYPT_OK or CRYPT_ERROR_NOTAVAIL without trying to
return algorithm information.

If you just want to check whether an algorithm is available, you can set the mode
parameter to CRYPT_UNUSED:

cryptQueryCapability(algorithm, CRYPT_UNUSED, NULL);

Working with Configuration Options
In order to allow extensive control over its security and operational parameters,
cryptlib provides a configuration database which can be used to tune its operation for
different environments using either the Windows registry or configuration files which
function similarly to Unix .rc files. This allows cryptlib to be customised on a per-
user basis (for example it can remember which key the user usually uses to sign
messages and offer to use this key by default), allows a system administrator or
manager to set a consistent security policy (for example mandating the use of 1024-or
2048 bit public keys on a company-wide basis instead of the unsafe 512-bit keys used
in most US-sourced products), and provides information on the use of optional
features such as smart card readers, encryption hardware, and cryptographically
strong random number generators. The configuration options which affect encryption
parameter settings are automatically applied by cryptlib to operations such as key
generation and data encryption and signing when you supply the CRYPT_USE_-
DEFAULT option to a cryptlib function. When you call a function with a default
parameter, cryptlib will consult its configuration database to determine which value it
should use. If there are no database entries present, it will fall back to using hard-
coded defaults, generally the safest, most conservative values available which
emphasize security over performance.

The configuration database can be used to tune the way cryptlib works, with options
ranging from algorithms and key sizes through to locations of key collections,
preferred public/private keys to use for signing and encryption, and what to do when
certain unusual conditions are encountered. The available options are listed below,

Working with Configuration Options 151

with the data type associated with each value being either a boolean (B), numeric (N),
or string (S) value:

Value Type Description

CRYPT_OPTION_CERT_-
ENCODECRITICAL

CRYPT_OPTION_CERT_-
DECODECRITICAL

B Whether to encode certificates
with the critical flag set in
extensions, and whether to
process the critical flag when
decoding certificate extensions.

CRYPT_OPTION_CERT_-
CHECKENCODING

B Whether to verify that imported
certificates have a valid encoding.

CRYPT_OPTION_CERT_-
CREATEV3CERT

B Whether to create X.509v3
certificates when signing/
exporting certificates.

CRYPT_OPTION_CERT_-
ENCODE_VALIDITYNESTING

CRYPT_OPTION_CERT_-
DECODE_VALIDITYNESTING

B Whether to encode certificates
with validity period nesting, and
whether to enforce validity period
nesting when decoding
certificates.

CRYPT_OPTION_CERT_-
FIXEMAILADDRESS

B Whether to update an obsolete
email address encoding format
when reading certificate objects.

CRYPT_OPTION_CERT_-
FIXSTRINGS

B Whether to correct invalid string
encodings when importing
certificate objects.

CRYPT_OPTION_CERT_-
ISSUERNAMEBLOB

B Whether to treat the certificate
issuer name as a blob when
writing it to a certificate. If the
original encoding of the issuer
name is invalid, this will
propagate the invalid encoding
rather than correcting it (this is
required by some software to
perform correct certificate
chaining).

CRYPT_OPTION_CERT_-
KEYIDBLOB

B Whether to treat the data in the
authorityKeyIdentifer extension as
an opaque blob. This is
recommended in order to handle
the large number of incompatible
formats for this extension.

CRYPT_OPTION_CERT_-
PKCS10ALT

B Whether to use the alternative
encoding for PKCS #10
certification requests.

CRYPT_OPTION_CERT_-
SIGNUNRECOGNISED-
ATTRIBUTES

B Whether to sign a certificate
containing unrecognised
extensions. If this option is set to
false, the extensions will be
omitted from the certificate when
it is signed.

Miscellaneous Topics152

Value Type Description
CRYPT_OPTION_CERT_-

TRUSTCHAINROOT
B Whether to explcitly trust the root

CA certificate in a certificate
chain. If the chain doesn’t contain
a trusted CA certificate, this
option can be used to allow the
chain to be validated.

CRYPT_OPTION_CERT_-
UPDATEINTERVAL

N The update interval in days for
CRL’s.

CRYPT_OPTION_CERT_-
VALIDITY

N The validity period in days for
certificates.

CRYPT_OPTION_CMS_-
DEFAULTATTRIBUTES

CRYPT_OPTION_SMIME_-
DEFAULTATTRIBUTES

B Whether to add the default CMS /
S/MIME attributes to signatures
(these are alternative names for
the same option, since S/MIME
uses CMS as the underlying
format).

CRYPT_OPTION_-
CONFIGCHANGED

B Whether any configuration
options have been changed from
their original settings.

CRYPT_OPTION_DEVICE_-
PKCS11_DVR01
...

CRYPT_OPTION_DEVICE_-
PKCS11_DVR05

S The module names of any PKCS
#11 drivers which cryptlib should
load on startup.

CRYPT_OPTION_DEVICE_-
SERIALRNG

S The port which the serial-based
hardware random number
generator is connected to, for
example “COM1”.

CRYPT_OPTION_DEVICE_-
SERIALRNG_PARAMS

S The port parameters for the serial-
based hardware random number
generator, for example
“9600,8,N,1”.

CRYPT_OPTION_ENCR_ALGO N Encryption algorithm given as a
conventional-encryption
CRYPT_ALGO.

CRYPT_OPTION_ENCR_HASH N Hash algorithm given as a hash
CRYPT_ALGO.

CRYPT_OPTION_INFO_-
COPYRIGHT

S cryptlib copyright notice.

CRYPT_OPTION_INFO_-
DESCRIPTION

S cryptlib description.

CRYPT_OPTION_INFO_-
MAJORVERSION

CRYPT_OPTION_INFO_-
MINORVERSION

CRYPT_OPTION_INFO_-
STEPPING

N cryptlib major and minor version
numbers and stepping number.

Working with Configuration Options 153

Value Type Description

CRYPT_OPTION_KEYING_ALGO N Key processing algorithm given as
a hash CRYPT_ALGO.

CRYPT_OPTION_KEYING_-
ITERATIONS

N Number of times to iterate the
key-processing algorithm.

CRYPT_OPTION_KEYS_LDAP_-
CACERTNAME

CRYPT_OPTION_KEYS_LDAP_-
CERTNAME

CRYPT_OPTION_KEYS_LDAP_-
CRLNAME

CRYPT_OPTION_KEYS_LDAP_-
EMAILNAME

CRYPT_OPTION_KEYS_LDAP_-
OBJECTCLASS

S The names of various LDAP
attributes and object classes used
for certificate storage/retrieval.

CRYPT_OPTION_MISC_-
ASYNCINIT

B Whether to bind in various drivers
asynchronously when cryptlib is
initialised. This performs the
initialisation in a background
thread rather than blocking on
startup until the initialisation has
completed.

CRYPT_OPTION_MISC_-
FORCELOCK

B Whether to force memory locking.
If this option is set and memory
can’t be page-locked, many
functions will return with the error
code CRYPT_NOSECURE. This
option can be enabled when it is
absolutely essential that memory
be locked to make it non-
pageable.

CRYPT_OPTION_PKC_ALGO N Public-key encryption algorithm
given as a public-key
CRYPT_ALGO.

CRYPT_OPTION_PKC_KEYSIZE N Public-key encryption key size in
bytes.

CRYPT_OPTION_SIG_ALGO N Signature algorithm given as a
public-key encryption
CRYPT_ALGO.

CRYPT_OPTION_SIG_KEYSIZE N Signature keysize in bytes.

CRYPT_OPTION_CONFIGCHANGED has special significance in that it contains
the current state of the configuration options. If this value is FALSE, the current in-
memory configuration options are still set to the same value they had when cryptlib
was started. If set to TRUE, one or more options have been changed and they no
longer match the values saved in permanent storage such as a hard disk. Writing this
value back to FALSE forces the current in-memory values to be committed to
permanent storage, so the two match up again.

Querying/Setting Configuration Options
You can manipulate the configuration options by getting or setting the appropriate
attribute values. Since these apply to all of cryptlib rather than to any specific object,

Miscellaneous Topics154

you should set the object handle to CRYPT_UNUSED. For example to query the
current default encryption algorithm you would use:

CRYPT_ALGO cryptAlgo;

cryptGetAttribute(CRYPT_UNUSED, CRYPT_OPTION_ENCR_ALGO, &cryptAlgo);

To set the default encryption algorithm to CAST-128, you would use:

CRYPT_ALGO cryptAlgo;

cryptSetAttribute(CRYPT_UNUSED, CRYPT_OPTION_ENCR_ALGO,
CRYPT_ALGO_CAST);

A few of the options are used internally by cryptlib and are read-only (this is
indicated in the options’ description). These will return CRYPT_ERROR_-
PERMISSION if you try to modify them to indicate that you don’t have permission to
change this option.

Saving Configuration Options
The changes you make to the configuration options only last while your program is
running or while cryptlib is loaded. In order to make the changes permanent, you can
save them to a permanent storage medium such as a hard disk by setting the
CRYPT_OPTION_CONFIGCHANGED option to FALSE, indicating that the in-
memory settings will be synced to disk so that the two match up. cryptlib will
automatically reload the saved options when it starts.

The location of the saved configuration options depend on the system type on which
cryptlib is running:

System Location

BeOS
Unix

$(HOME)/cryptlib.p15

DOS
OS/2

./cryptlib.p15

MVS
VM/CMS

CRYPTLIB P15

Tandem $system.system.cryptlib

Windows 3.x Windows/cryptlib.p15

Windows 2000
Windows 95/98
Windows NT

Windows/Profiles/user_name/Application
Data/cryptlib.p15
(determined by the Windows application data
CSIDL)

Where the operating system supports it, cryptlib will set the security options on the
configuration information so that only the person who created it (and, usually, the
system administrator) can access it. For example under Unix the file access bits are
set to allow only the file owner (and, by extension, the superuser) to access the file,
and under Windows NT with NTFS the file ACL’s are set so that only the user who
owns it can access or change it.

Obtaining Information About Cryptlib
cryptlib provides a number of read-only configuration options which you can use to
obtain information about the version of cryptlib which you’re working with.

These options are:

Value Type Description

Random Numbers 155

Value Type Description

CRYPT_OPTION_INFO_-
MAJORVERSION

CRYPT_OPTION_INFO_-
MINORVERSION

CRYPT_OPTION_INFO_-
STEPPING

N The cryptlib major and minor
version numbers and release
stepping. For cryptlib 3.0 the
major version number is 3 and the
minor version number is 0. For
beta release 1 the stepping is 1

CRYPT_OPTION_INFO_-
DESCRIPTION

S A text string containing a
description of cryptlib.

CRYPT_OPTION_INFO_-
COPYRIGHT

S The cryptlib copyright notice.

Random Numbers
Several cryptlib functions require access to a source of cryptographically strong
random numbers. These numbers are obtained by taking system information and
stirring it into an internal data pool using the Secure Hash Algorithm. The random-
data-gathering operation is controlled with the cryptAddRandom function, which
can be used to either inject your own random information into the internal pool or to
tell cryptlib to poll the system for random information. To add your own random
data (such as keystroke timings when the user enters a password) to the pool, use:

cryptAddRandom(buffer, bufferLength);

Gathering Random Information
cryptlib can also gather its own random data by polling the system for random
information. There are two polling methods you can use, a fast poll which returns
immediately and retrieves a moderate amount of random information, and a slow poll
which may take some time but which retrieves much larger amounts of random
information. A fast poll is performed with:

cryptAddRandom(NULL, CRYPT_RANDOM_FASTPOLL);

In general you should sprinkle these throughout your code to build up the amount of
randomness in the pool.

A slow poll is performed with:

cryptAddRandom(NULL, CRYPT_RANDOM_SLOWPOLL);

The effect of this call varies depending on the operating system. Under DOS the call
returns immediately (see below). Under Windows 3.x the call will get all the
information it can in about a second, then return (there is usually more information
present in the system than can be obtained in a second). Under BeOS, OS/2, and on
the Macintosh, the call will get all the information it can and then return. Under
Unix, Windows 95, and Windows NT the call will spawn one or more separate
processes or threads to perform the polling and will return immediately while the poll
continues in the background.

Before the first use of a high-level capability such as encryption envelopes or calling
cryptGenerateKey or cryptExportKey you must perform at least one slow poll (or,
in some cases, several fast polls — see below) in order to accumulate enough random
information in the pool to safely generate a key into an encryption context or export a
key. On most systems cryptlib will perform a nonblocking randomness poll, so you
can usually do this by calling the slow poll routine when your program starts so that
the random information will have accumulated by the time you envelope the data or
call cryptGenerateKey or cryptExportKey :

/* Program startup */

cryptAddRandom(NULL, CRYPT_RANDOM_SLOWPOLL);

/* Other code, slow poll runs in the background */

Miscellaneous Topics156

cryptGenerateKey(cryptContext);

If you forget to perform a slow poll beforehand, the high-level function will block
until the slow poll completes. The fact that the call is blocking is usually fairly
obvious, because your program will stop for the duration of the randomness poll. If
no reliable random data is available then the high-level function which requires it will
return the error CRYPT_ERROR_RANDOM.

Obtaining Random Numbers
You can obtain random data from cryptlib by using an encryption context with an
algorithm which produces byte-oriented output (for example a stream cipher or a
block cipher employed in a stream mode like CFB or OFB). To obtain random data,
create a context, generate a key into it, and use the context to generate the required
quantity of output by encrypting the contents of a buffer. Since the encryption output
is random, it doesn’t matter whether you zero the buffer beforehand or not. For
example you can use the RC4 algorithm (a stream cipher) to generate random data
with:

CRYPT_CONTEXT cryptContext;

cryptCreateContext(&cryptContext, CRYPT_ALGO_RC4);
cryptGenerateKey(cryptContext)
cryptEncrypt(cryptContext, randomDataBuffer, randomDataLength);
cryptDestroyContext(cryptContext);

This will fill the data buffer with the required number of random bytes.

Random Information Gathering Techniques
The information obtained by the slow and fast polls under various operating systems
and DOS is as follows:

BeOS
A fast poll adds the state of the high-speed system timer, and miscellaneous system-
related information.

If a /dev/random driver which continually accumulates random data from the
system is available, cryptlib will try to use this. A slow poll adds information on all
teams (BeOS applications), threads, memory areas, message ports, semaphores, and
images (code chunks) currently present in the system.

At least one slow poll is required to accumulate enough randomness for use by
cryptlib.

DOS
Since DOS is so simple, it provides very little random information. A fast poll
simply adds the value of the system clock to a 1-second resolution (which is next to
useless). A slow poll relies on the presence of a /dev/random -style driver such as
noise.sys, which records the timing between keystrokes, variations in disk access
times, clock drift while the system is idling at the command line, the variation in
EGA/VGA retrace events, and mouse movements.

The addition of external random data via cryptAddRandom() is strongly
recommended under DOS. Without either this or the presence of a /dev/random -
style driver, the random numbers (and therefor the encryption keys) generated by
cryptlib will be extremely easy to guess and will provide virtually no security. For
this reason any functions which require random numbers will always return
CRYPT_NORANDOM unless a /dev/random driver is present or external
randomness is added via cryptAddRandom.

At least one /dev/random slow poll is required to accumulate enough randomness
for use by cryptlib.

Random Numbers 157

Macintosh
A fast poll adds the status of the last alert, how much battery time is remaining and
the voltage from all batteries, the internal battery status, the current date and time and
time since system startup in ticks, the application heap limit and current and heap
zone, free memory in the current and system heap, microseconds since system
startup, whether QuickDraw has finished drawing, modem status, SCSI status
information, maximum block allocatable without compacting, available stack space,
the last QuickDraw error code, the event code and message, time, and mouse location
for the next event in the event queue and the OS event queue, information on the
topmost window which includes device-specific info, grafport information, visible
and clipping region, pattern, pen, text, and colour information, the window variant
and the colour table record for the window if there is one, mouse-related such as the
mouse button status and mouse position, information on the window underneath the
mouse, the size, handle, and location of the desk scrap/clipboard, information on the
current thread, the sound mananger status (the number of allocated sound channels
and the current CPU load from these channels), the speech manager status, and the
serial port status (which includes information on recent errors, read and write pending
status, and flow control values).

A slow poll adds information about each graphics device, information about each
process including the name and serial number of the process, file and resource
information, memory usage information, the name of the launching process, launch
time, and accumulated CPU time, and the command type, trap address, and
parameters for all commands in the file I/O queue (the parameters are quite complex
and are listed on page 117 of IM IV, and include reference numbers, attributes, time
stamps, length and file allocation information, finder info, and large amounts of other
volume and filesystem-related data).

In addition it adds more constant but still application- and system-specific
information such as the current font family ID, node ID of the local AppleTalk router,
caret blink delay, CPU speed, double-click delay, sound volume, application and
system heap zone, the number of resource types in the application, the number of
sounds voices available, the FRef of the current resource file, volume of the sysbeep,
primary line direction, computer SCSI disk mode ID, timeout before the screen is
dimmed and before the computer is put to sleep, number of available threads in the
thread pool, whether hard drive spin-down is disabled, the handle to the i18n
resources, timeout time for the internal hard drive, the number of documents/files
which were selected when the app started and for each document get the vRefNum,
name, type, and version, the applications name, resource file reference number, and
handle to the finder information, all sorts of statistics such as physical information,
disk and write-protect present status, error status, and handler queue information, on
floppy drives attached to the system. Also get the volume name, volume reference
number and number of bytes free, for the volume in the drive, information on the
head and tail of the vertical retrace queue, the parameter RAM settings, information
about the machines geographic location, information on current graphics devices
including device information such as dimensions and cursor information, and a
number of handles to device-related data blocks and functions, and information about
the dimentions and contents of the devices pixel image as well as the images
resolution, storage format, depth, and colour usage, the current system environment,
including the machine and system software type, the keyboard type, where there’s a
colour display attached, the AppleTalk driver version, and the VRefNum of the
system folder, the AppleTalk node ID and network number for this machine,
information on each device connected to the ADB including the device handler ID,
the devices ADB address, and the address of the devices handler and storage area, the
general device status information and (if possible) device-specific status for the most
common device types (the general device information contains the device handle and
flags, I/O queue information, event information, and other driver-related details), the
name and volume reference number for the current volume, the time information,
attributes, directory information and bitmap, volume allocation information, volume
and drive information, pointers to various pieces of volume-related information, and
details on path and directory caches, for each volume, global script manager variables

Miscellaneous Topics158

and vectors, including the globals changed count, font, script, and internationalisation
flags, various script types, and cache information, the script code for the font script
the internationalisation script, and for each one add the changed count, font, script,
internationalisation, and display flags, resource ID’s, and script file information, the
device ID, partition, slot number, resource ID, and driver reference number for the
default startup device, the slot number and resource ID for the default video device,
the default OS type, and the AppleTalk command block and data size and number of
sessions.

At least one slow poll is required to accumulate enough randomness for use by
cryptlib.

OS/2
A fast poll adds various (fairly constant) pieces of machine information and
timestamps, date and time, the thread information block and process information
block, and the IRQ0 hi-res timer count.

A slow poll adds information on each window and attached process on the
Presentation Manager desktop.

At least ten fast polls or one slow poll are required to accumulate enough randomness
for use by cryptlib.

UNIX
A fast poll adds the current time to a reasonably high resolution (usually milliseconds
or microseconds), the total user and system time, resident set size, page fault
statistics, number of I/O operations, messages sent and received, signals received,
number of context switches, and various other system statistics.

A slow poll varies with the Unix flavour being used. If a /dev/random driver
which continually accumulates random data from the system is available, cryptlib
will try to use this. If this is not present it will use a variety of information on disk
I/O, network traffic, NFS traffic, packet filter statistics, multiprocessor statistics,
process information, users, VM statistics, process statistics, open files, inodes,
terminals, vector processors, streams, and loaded code. The exact data collected
depends on the system, but generally includes quite detailed operating statistics and
information.

At least one slow poll is required to accumulate enough randomness for use by
cryptlib.

Windows 3.x
A fast poll adds the number of bytes free in the global heap, the cursor position when
the last message was received, a 55ms time for the last message, whether the system
queue has any events in it, the number of active tasks, the 55ms time since Windows
started, the handle of the window with the mouse capture and input focus, the current
mouse cursor and caret position, the largest free memory block, number of lockable
pages, number of unlocked pages, number of free and used pages, number of
swapped pages, 1ms execution time of the current task and virtual machine, and
percentage free and memory segment of the user and GDI heaps.

A slow poll adds the linear address, size in bytes, handle, lock count, owner, object
type, and segment type of every object in the global heap, the module name, handle,
reference count, executable path, and next module link of every loaded module, the
task handle, parent task handle, instance handle, stack segment and offset, stack size,
number of pending events, task queue, code segment and instruction pointer, and the
name of the module executing the task for every running task.

At least one slow poll or five fast polls are required to accumulate enough
randomness for use by cryptlib.

Random Numbers 159

Windows 95
A fast poll adds the handle of the active window, the handle of the window with
mouse capture, the handle of the clipboard owner, the handle of the start of the
clipboard viwer list, the pseudohandle of the current process, the current process ID,
the pseudohandle of the current thread, the current thread ID, the number of
milliseconds since Windows started, the handle of the desktop window, the handle of
the window with the keyboard focus, whether the system queue has any events in it,
the cursor position for the last message in the queue, the millisecond time for the last
message in the queue, the handle of the window with the clipboard open, the handle
of the process heap, the handle of the processes window station, a bitmap of the types
of events in the input queue, the current caret and mouse cursor position, the
percentage of memory in use, bytes of physical memory available, bytes of free
physical memory, bytes in the paging file, free bytes in the paging file, user bytes of
address space, and free user bytes of memory, the thread and process creation time,
exit time, time in kernel mode, and time in user mode in 100ns intervals, the
minimum and maximum working set size for the current process, the name of the
desktop, console window title, position and size for new windows, window flags, and
handles for stdin, stdout, and stderr.

A slow poll adds the process ID, heap ID, size in bytes, handle, linear address, type,
and lock count of every object on the local heap, the module ID, process ID, global
usage count, module usage count, base address, size in bytes, handle, and executable
path of every module in the system, the usage count, process ID, heap ID, module ID,
number of threads, parent process ID, base priority class, and executable path of
every running process, and the thread ID, process ID, base priority, and priority level
change of every executing thread in the system.

At least one slow poll or three fast polls are required to accumulate enough
randomness for use by cryptlib.

Windows NT
A fast poll adds the handle of the active window, the handle of the window with
mouse capture, the handle of the clipboard owner, the handle of the start of the
clipboard viwer list, the pseudohandle of the current process, the current process ID,
the pseudohandle of the current thread, the current thread ID, the number of
milliseconds since Windows started, the handle of the desktop window, the handle of
the window with the keyboard focus, whether the system queue has any events in it,
the cursor position for the last message in the queue, the millisecond time for the last
message in the queue, the handle of the window with the clipboard open, the handle
of the process heap, the handle of the processes window station, a bitmap of the types
of events in the input queue, the current caret and mouse cursor position, the
percentage of memory in use, bytes of physical memory available, bytes of free
physical memory, bytes in the paging file, free bytes in the paging file, user bytes of
address space, and free user bytes of memory, the thread and process creation time,
exit time, time in kernel mode, and time in user mode in 100ns intervals, the
minimum and maximum working set size for the current process, the name of the
desktop, console window title, position and size for new windows, window flags, and
handles for stdin, stdout, and stderr.

A slow poll adds the number of bytes read from and written to disk, the disk read and
write time, the number of read and write operations, the depth of the I/O queue, a
large number of network statistics such as the number of bytes sent and received, the
number of SMB’s sent and received, the number of paging, nonpaging, and cached
bytes sent and received, the number of failed initial and failed completion operations,
the number of reads, random reads, large/small SMB reads, writes, random writes,
large and small SMB writes, the number of reads and writes denied, the number of
sessions, failed sessions, reconnects, and hung sessions, and various lan manager
statistics, and an equally large number of system performance-related statistics such
covering virtually every aspect of the operation of the system (the exact details vary
from machine to machine, but cryptlib will query every available performance
counter and system monitor).

Miscellaneous Topics160

At least one slow poll or three fast polls are required to accumulate enough
randomness for use by cryptlib.

Hardware Random Number Generation
On some hardware platforms cryptlib can make use of external hardware random
number generators which function alongside the built-in system polling generator. A
number of these generators are serial-port based, with data being read from them over
a standard serial-port interface. The parameters for the interface can be set using the
cryptlib configuration options as explained in “Miscellaneous Topics” on page 146.
The two parameters which are used to control serial-port based generators are the
serial port which the generator is connected to, set using the CRYPT_OPTION_-
HARDWARE_SERIALRNG option, and the parameters for the serial port, set using
the CRYPT_OPTION_HARDWARE_SERIALRNG_PARAMS option. The serial
port is the standard serial port name (for example “COM1”), and the parameters are
the standard serial port parameters which specify the interface speed, number of data
bits, parity, and stop bits (for example “9600,8,N,1”). For example to configure
cryptlib to use a serial-port based generator on COM2 running at 9600bps, you would
use:

cryptSetAttributeString(CRYPT_UNUSED,
CRYPT_OPTION_HARDWARE_SERIALRNG, "COM2", 4);

cryptSetAttributeString(CRYPT_UNUSED,
CRYPT_OPTION_HARDWARE_SERIALRNG_PARAMS, "9600,8,N,1", 10);

cryptSetAttribute(CRYPT_UNUSED, CRYPT_OPTION_CONFIGCHANGED, FALSE);

The next time cryptlib is started, it will try to connect to the hardware generator using
these options.

In addition to serial-port based generators, cryptlib supports the use of hardware
generators in crypto devices such as PKCS #11 crypto tokens and Fortezza cards, and
can use these as additional sources of randomness.

Working with Newer Versions of cryptlib
Your software can automatically support new encryption algorithms and modes as
they are added to cryptlib if you check for the range of supported algorithms and
modes instead of hard-coding in the values which existed when you wrote the
program. In order to support this, cryptlib predefines the values CRYPT_ALGO_-
FIRST_CONVENTIONAL and CRYPT_ALGO_LAST_CONVENTIONAL for the
first and last possible conventional encryption algorithms, CRYPT_ALGO_FIRST_-
PKC and CRYPT_ALGO_LAST_PKC for the first and last possible public-key
encryption algorithms, CRYPT_ALGO_FIRST_HASH and CRYPT_ALGO_-
LAST_HASH for the first and last possible hash algorithms, and CRYPT_ALGO_-
FIRST_MAC and CRYPT_ALGO_LAST_MAC for the first and last possible MAC
algorithms. By checking each possible algorithm value within this range using
cryptQueryCapability , your software can automatically incorporate any new
algorithms as they are added. For example to scan for all available conventional
encryption algorithms you would use:

CRYPT_ALGO cryptAlgo;

for(cryptAlgo = CRYPT_ALGO_FIRST_CONVENTIONAL;
 cryptAlgo <= CRYPT_ALGO_LAST_CONVENTIONAL;
 cryptAlgo++)

if(cryptStatusOK(cryptQueryCapability(cryptAlgo, CRYPT_UNUSED,
NULL))
/* Perform action using algorithm */;

The action you would perform would typically be building a list of available
algorithms and allowing the user to choose the one they preferred. The same can be
done for the public-key and hash algorithms.

cryptlib also predefines CRYPT_MODE_FIRST_CONVENTIONAL and
CRYPT_MODE_LAST_CONVENTIONAL which cover the range of available

Working with Newer Versions of cryptlib 161

conventional encryption modes. Once you’ve determined which conventional
algorithm to use you can use:

CRYPT_MODE cryptMode;

for(cryptMode = CRYPT_MODE_FIRST_CONVENTIONAL;
 cryptMode <= CRYPT_MODE_LAST_CONVENTIONAL;
 cryptMode++)

if(cryptStatusOK(cryptQueryCapability(cryptAlgo, cryptMode, NULL
))
/* Perform action with algorithm */;

If your code follows these guidelines, it will automatically handle any new encryption
algorithms and modes which are added in newer versions of cryptlib. If you are using
the shared library or DLL form of cryptlib, your softwares’ encryption capabilities
will be automatically upgraded every time cryptlib is upgraded.

Error Handling162

Error Handling
Each function in cryptlib performs extensive parameter and error checking (although
monitoring of error codes has been omitted in the code samples for readability). In
addition, when cryptlib is initialised with cryptInitEx each of the built-in encryption
algorithms goes through a self-test procedure which checks the implementation using
standard test vectors and methods given with the algorithm specification (typically
FIPS publications, ANSI or IETF standards, or standard reference implementations).
This self-test is used to verify that each encryption algorithm is performing as
required.

The macros cryptStatusError() and cryptStatusOK() can be used to
determine whether a return value denotes an error condition, for example:

CRYPT_CONTEXT cryptContext;
int status;

status = cryptCreateContext(&cryptContext, CRYPT_ALGO_IDEA);
if(cryptStatusError(status))

/* Perform error processing */

The error codes which can be returned are grouped into a number of classes which
cover areas such as function parameter errors, resource errors, and data access errors.

The first group contains a single member, the “no error” value:

Error code Description

CRYPT_OK No error.

The next group contains parameter error codes which identify erroneous parameters
passed to cryptlib functions:

Error code Description

CRYPT_ERROR_-
PARAM1…

CRYPT_ERROR_-
PARAM7

There is a problem with a parameter passed to a
cryptlib function. The exact code depends on the
parameter in error.

The next group contains resource-related errors such as a certain resource not being
available or initialised:

Error code Description

CRYPT_ERROR_-
FAILED

The operation, for example a public-key encryption or
decryption, failed.

CRYPT_ERROR_-
INITED

The object or portion of an object which you have tried
to initialise has already been initialised previously.

CRYPT_ERROR_-
MEMORY

There is not enough memory available to perform this
operation.

CRYPT_NOSECURE cryptlib cannot perform an operation at the requested
security level (for example allocated pages can’t be
locked into memory to prevent them from being
swapped to disk, or an LDAP connection can’t be
established using SSL).

CRYPT_ERROR_-
NOTINITED

The object or portion of an object which you have tried
to use hasn’t been initialised yet, or a resource which is
required isn’t available.

CRYPT_ERROR_-
RANDOM

Not enough random data is available for cryptlib to
perform the requested operation.

Working with Newer Versions of cryptlib 163

The next group contains cryptlib security violations such as an attempt to use the
wrong object for an operation or to use an object for which you don’t have access
permission:

Error code Description

CRYPT_ERROR_-
BUSY

The object you are trying to use (usually a keyset object
or encryption context) is currently in use by an
asynchronous operation such as a key generation or key
database lookup operation.

CRYPT_ERROR_-
COMPLETE

An operation which consists of multiple steps (such as
a message hash) is complete and cannot be continued.

CRYPT_ERROR_-
INCOMPLETE

An operation which consists of multiple steps (such as
a message hash) is still in progress and requires further
steps before it can be regarded as having completed.

CRYPT_ERROR_-
INVALID

The public/private key context or certificate object is
invalid for this type of operation. You can obtain the
exact nature of the problem by reading the
CRYPT_ATTRIBUTE_ERRORLOCUS and
CRYPT_ATTRIBUTE_ERRORTYPE attributes..

CRYPT_ERROR_-
NOTAVAIL

The requested operation is not available for this object
(for example an attempt to load an encryption key into
a hash context, or to decrypt a Diffie-Hellman shared
integer with an RSA key).

CRYPT_ERROR_-
PERMISSION

You don’t have the permission to perform this type of
operation (for example an encrypt-only key being used
for a decrypt operation, or an attempt to modify a read-
only data object).

CRYPT_ERROR_-
SIGNALLED

An external event such as a signal from a hardware
device caused a change in the state of the object. For
example if a smart card is removed from a card reader,
all the objects which had been loaded or derived from
the data on the smart card would return
CRYPT_SIGNALLED if you tried to use them.

Once an object has entered this state, the only available
option is to destroy it, typically using
cryptDestroyObject.

CRYPT_ERROR_-
WRONGKEY

The key being used to decrypt a piece of data is
incorrect.

The next group contains errors related to the higher-level encryption functions such
as the key export/import and signature generation/checking functions:

Error code Description

CRYPT_ERROR_-
BADDATA

The data item (typically encrypted or signed data, or a
key certificate) was corrupt, or not all of the data was
present, and it can’t be processed.

CRYPT_ERROR_-
OVERFLOW

There is too much data for this function to work with.
For a public-key encryption or signature function this
means there is too much data for this public/private key
to encrypt/sign. You should either use a larger
public/private key (in general a 1024-bit or larger key
should be sufficient for most purposes) or less data (for
example by reducing the key size in the encryption
context passed to cryptExportKey).

For a key certificate function this means the amount of

Error Handling164

Error code Description
data you have supplied is more than what is allowed for
the field you are trying to store it in.

For an enveloping function, you need to call
cryptPopData before you can add any more data to the
envelope.

CRYPT_ERROR_-
SIGNATURE

The signature or integrity check value didn’t match the
data.

CRYPT_ERROR_-
UNDERFLOW

There is too little data in the envelope for cryptlib to
process (for example only a portion of a data item may
be present, which isn’t enough for cryptlib to work
with).

The next group contains data/information access errors, usually arising from keyset,
certificate, or device container object accesses:

Error code Description

CRYPT_ERROR_-
DUPLICATE

The given item is already present in the container
object.

CRYPT_ERROR_-
NOTFOUND

The requested item (for example a key being read from
a key database or a certificate component being
extracted from a certificate) isn’t present in the
container object.

CRYPT_ERROR_-
OPEN

The container object (for example a keyset or
configuration database) could not be opened, either
because it was not found or because the open operation
failed.

CRYPT_ERROR_-
READ

The requested item could not be read from the
container object.

CRYPT_ERROR_-
WRITE

The item couldn’t be written to the container object or
the data object couldn’t be updated (for example a key
couldn’t be written to a keyset, or couldn’t be deleted
from a keyset).

The next group contains errors related to data enveloping:

Error code Description
CRYPT_ENVELOPE_

RESOURCE
A resource such as an encryption key or password
needs to be added to the envelope before cryptlib can
continue processing the data in it.

Extended Error Reporting
Sometimes the standard cryptlib error codes aren’t capable of returning full details on
the large variety of possible error conditions which can be encountered. This is
particularly true for complex objects such as certificates or ones which are tied to
other software or hardware which is outside cryptlib’s control, for example database
or directory keyset objects or crypto devices. For example if there is a problem with
a certificate, cryptlib will return a generic CRYPT_ERROR_INVALID code. In
order to obtain more information on the problem you can read the
CRYPT_ATTRIBUTE_ERRORLOCUS attribute to obtain the locus of the error (the
certificate component which caused the problem) and the
CRYPT_ATTRIBUTE_ERRORTYPE attribute to identify the type of problem which
occurred. These error attributes are present in all objects and can often provide more
extensive information on why an operation with the object failed, for example if a
function returns CRYPT_ERROR_NOTINITED then the
CRYPT_ATTRIBUTE_ERRORLOCUS attribute will tell you which object attribute
hasn’t been initialised.

Extended Error Reporting 165

The error types are:

Error Type Description

CRYPT_ERRTYPE_-
ATTR_ABSENT

The attribute is required but not present in the
object.

CRYPT_ERRTYPE_-
ATTR_PRESENT

The attribute is already present in the object, or
present but not permitted for this type of object.

CRYPT_ERRTYPE_-
ATTR_SIZE

The attribute is smaller than the minimum
allowable or larger than the maximum allowable
size.

CRYPT_ERRORTYPE_-
ATTR_VALUE

The attribute is set to an invalid value.

CRYPT_ERRTYPE_-
CONSTRAINT

The attribute violates some constraint for the
object, or represents a constraint which is being
violated, for example a validity period or key
usage or certificate policy constraint.

CRYPT_ERRTYPE_-
ISSUER_CONSTRAINT

The attribute violates a constraint set by an
issuer certificate, for example the issuer may set
a name constraint which is violated by the
certificate object’s subjectName or subject
altName.

For example to obtain more information on why an attempt to sign a certificate failed
you would use:

CRYPT_CERTINFO_TYPE errorLocus;
CRYPT_ERRTYPE_TYPE errorType;

status = cryptSignCert(cryptCert, cryptCAKey);
if(cryptStatusError(status))

{
cryptGetAttribute(cryptCert, CRYPT_ATTRIBUTE_ERRORLOCUS,

&errorLocus);
cryptGetAttribute(cryptCert, CRYPT_ATTRIBUTE_ERRORTYPE, &errorType

);
}

In addition to the error type and locus, keyset objects and objects tied to devices often
provide internal error codes for the keyset or device. The device- or keyset-specific
error code and message is accessible as the CRYPT_ATTRIBUTE_INT_-
ERRORCODE and CRYPT_ATTRIBUTE_INT_ERRORMESSAGE attributes. For
example to obtain more information on why an attempt to read a key from an SQL
Server database failed you would use:

CRYPT_KEYSET cryptKeyset;
CRYPT_HANDLE publicKey
int status;

status = cryptGetPublicKey(&cryptKeyset, &publicKey,
CRYPT_KEYID_NAME, "John Doe");

if(cryptStatusError(status))
{
int errorCode, errorStringLengh;
char *errorString;

errorString = malloc(...);
cryptGetAttribute(cryptKeyset, CRYPT_ATTRIBUTE_INT_ERRORCODE,

&errorCode);
cryptGetAttributeString(cryptKeyset,

CRYPT_ATTRIBUTE_INT_ERRORMESSAGE, errorString,
&errorStringLength);

}

Note that the error information being returned is passed through by cryptlib from the
underlying software or hardware, and will be specific to the implementation. For

Error Handling166

example if the software which underlies a keyset database is SQL Server then the
data returned will be the SQL Server error code and message.

Blowfish 167

Algorithms and Modes
Blowfish

Blowfish is a 64-bit block cipher with a 448-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_BLOWFISH.

CAST-128
CAST-128 is a 64-bit block cipher with a 128-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_CAST.

DES
DES is a 64-bit block cipher with a 56-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_DES.

Although cryptlib uses 64-bit DES keys, only 56 bits of the key are actually used.
The least significant bit in each byte is used as a parity bit (cryptlib will set the
correct parity values for you, so you don’t have to worry about this). You can treat
the algorithm as having a 64-bit key, but bear in mind that only the high 7 bits of each
byte are actually used as keying material.

Loading a key will return a CRYPT_ERROR_PARAM2 error if the key is a weak
key. cryptExportKey will export the correct parity-adjusted version of the key.

Triple DES
Triple DES is a 64-bit block cipher with a 112/168-bit key and has the cryptlib
algorithm identifier CRYPT_ALGO_3DES.

Although cryptlib uses 128, or 192-bit DES keys (depending on whether two- or
three-key triple DES is being used), only 112 or 168 bits of the key are actually used.
The least significant bit in each byte is used as a parity bit (cryptlib will set the
correct parity values for you, so you don’t have to worry about this). You can treat
the algorithm as having a 128 or 192-bit key, but bear in mind that only the high 7
bits of each byte are actually used as keying material.

Loading a key will return a CRYPT_ERROR_PARAM2 error if the key is a weak
key. cryptExportKey will export the correct parity-adjusted version of the key.

Diffie-Hellman
Diffie-Hellman is a key exchange algorithm with a key size of up to 4096 bits and has
the cryptlib algorithm identifier CRYPT_ALGO_DH.

cryptEncrypt and cryptDecrypt will return a bad parameter code if the length
parameter is not CRYPT_USE_DEFAULT (CRYPT_ERROR_PARAM3 in this
case).

Diffie-Hellman was formerly covered by a patent in the US, this has now expired.

DSA
DSA is a digital signature algorithm with a key size of up to 1024 bits and has the
cryptlib algorithm identifier CRYPT_ALGO_DSA.

cryptEncrypt and cryptDecrypt will return a bad parameter code if the length
parameter is not CRYPT_USE_DEFAULT (CRYPT_ERROR_PARAM3 in this
case).

DSA is covered by US patent 5,231,668, with the patent held by the US government.
This patent has been made available royalty-free to all users worldwide. The

Algorithms and Modes168

Department of Commerce is not aware of any other patents which would be infringed
by the DSA. US patent 4,995,082, “Method for identifying subscribers and for
generating and verifying electronic signatures in a data exchange system” (“the
Schnorr patent”) relates to the DSA algorithm but only applies to a very restricted set
of smart-card based applications and does not affect the DSA implementation in
cryptlib.

ElGamal
ElGamal is a public-key encryption/digital signature algorithm with a key size of up
to 4096 bits and has the cryptlib algorithm identifier CRYPT_ALGO_ELGAMAL.

cryptEncrypt and cryptDecrypt will return a bad parameter code if the length
parameter is not CRYPT_USE_DEFAULT (CRYPT_ERROR_PARAM3 in this
case).

ElGamal was formerly covered by a patent in the US; this has now expired.

HMAC-MD5
HMAC-SHA1
HMAC-RIPEMD-160

HMAC-MD5, HMAC-SHA1, and HMAC-RIPEMD-160 are MAC algorithms with a
key size of up to 1024 bits and have the cryptlib algorithm identifiers
CRYPT_ALGO_HMAC_MD5, CRYPT_ALGO_HMAC_SHA, and
CRYPT_ALGO_HMAC_RIPEMD160.

IDEA
IDEA is a 64-bit block cipher with a 128-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_IDEA.

IDEA is covered by patents in Austria, France, Germany, Italy, Japan, the
Netherlands, Spain, Sweden, Switzerland, the UK, and the US. A statement from the
patent owners is included below.

The IDEA algorithm is patented by Ascom Systec Ltd. of CH-5506 Maegenwil,
Switzerland, who allow it to be used on a royalty-free basis for certain non-profit
applications. Commercial users must obtain a license from the company in order to
use IDEA. IDEA may be used on a royalty-free basis under the following
conditions:

Free use for private purposes

The free use of software containing the algorithm is strictly limited to non revenue
generating data transfer between private individuals, ie not serving commercial
purposes. Requests by freeware developers to obtain a royalty-free license to
spread an application program containing the algorithm for non-commercial
purposes must be directed to Ascom.

Special offer for shareware developers

There is a special waiver for shareware developers. Such waiver eliminates the
upfront fees as well as royalties for the first US$10,000 gross sales of a product
containing the algorithm if and only if:

1. The product is being sold for a minimum of US$10 and a maximum of US$50.

2. The source code for the shareware is available to the public.

Special conditions for research projects

The use of the algorithm in research projects is free provided that it serves the
purpose of such project and within the project duration. Any use of the algorithm

MD2 169

after the termination of a project including activities resulting from a project and for
purposes not directly related to the project requires a license.

Ascom Tech requires the following notice to be included for freeware products:

This software product contains the IDEA algorithm as described and claimed in US
patent 5,214,703, EPO patent 0482154 (covering Austria, France, Germany, Italy,
the Netherlands, Spain, Sweden, Switzerland, and the UK), and Japanese patent
application 508119/1991, “Device for the conversion of a digital block and use of
same” (hereinafter referred to as “the algorithm”). Any use of the algorithm for
commercial purposes is thus subject to a license from Ascom Systec Ltd. of CH-
5506 Maegenwil (Switzerland), being the patentee and sole owner of all rights,
including the trademark IDEA.

Commercial purposes shall mean any revenue generating purpose including but not
limited to:

i) Using the algorithm for company internal purposes (subject to a site license).

ii) Incorporating the algorithm into any software and distributing such software
and/or providing services relating thereto to others (subject to a product
license).

iii) Using a product containing the algorithm not covered by an IDEA license
(subject to an end user license).

All such end user license agreements are available exclusively from Ascom Systec
Ltd and may be requested via the WWW at http://www.ascom.ch/systec
or by email to idea@ascom.ch .

Use other than for commercial purposes is strictly limited to non-revenue
generating data transfer between private individuals. The use by government
agencies, non-profit organizations, etc is considered as use for commercial purposes
but may be subject to special conditions. Any misuse will be prosecuted.

MD2
MD2 is a message digest/hash algorithm with a digest/hash size of 128 bits and has
the cryptlib algorithm identifier CRYPT_ALGO_MD2.

MD4
MD5 is a message digest/hash algorithm with a digest/hash size of 128 bits and has
the cryptlib algorithm identifier CRYPT_ALGO_MD4.

MD5
MD5 is a message digest/hash algorithm with a digest/hash size of 128 bits and has
the cryptlib algorithm identifier CRYPT_ALGO_MD5.

MDC2
MDC2 is a DES-based MAC algorithm with a key size of 56 bits and a MAC size of
128 bits and has the cryptlib algorithm identifier CRYPT_ALGO_MDC2.

MDC2 is patented by IBM can cannot be used in the US without a license.

RC2
RC2 is a 64-bit block cipher with a 1024-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_RC2.

RC2 is trademarked in the US, it may be necessary to refer to it as “an algorithm
compatible with RC2” in products which use RC2 and are distributed in the US.

Algorithms and Modes170

RC4
RC4 is an 8-bit stream cipher with a key of up to 1024 bits and has the cryptlib
algorithm identifier CRYPT_ALGO_RC4.

RC4 is trademarked in the US, it may be necessary to refer to it as “an algorithm
compatible with RC4” in products which use RC4 and are distributed in the US. A
number of products refer to it as ArcFour.

RC5
RC5 is a 64-bit block cipher with an 832-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_RC5.

RC5 is covered by US patent 5,724,428, “Block Encryption Algorithm with Data-
Dependent Rotation”, issued 3 March 1998. The patent is held by RSA Data Security
Inc. 100 Marine Parkway, Redwoord City, California 94065, ph.+1 415 595-8782,
fax +1 415 595-1873, and the algorithm cannot be used commercially in the US
without a license.

RIPEMD-160
RIPEMD-160 is a message digest/hash algorithm with a digest/hash size of 160 bits
and has the cryptlib algorithm identifier CRYPT_ALGO_RIPEMD160.

RSA
RSA is a public-key encryption/digital signature algorithm with a key size of up to
4096 bits and has the cryptlib algorithm identifier CRYPT_ALGO_RSA.

cryptEncrypt and cryptDecrypt will return a bad parameter code if the length
parameter is not CRYPT_USE_DEFAULT (CRYPT_ERROR_PARAM3 in this
case).

RSA is patented in the US, with the patent held by RSA Data Security Inc. 100
Marine Parkway, Redwoord City, California 94065, ph.+1 415 595-8782, fax +1 415
595-1873, and cannot be used commercially in the US without a license. RSA
licenses can most easily be obtained by waiting another two years until the patent
expires. The patent licensing requirements for RSA seem to change quite a bit and
are difficult to obtain, a small amount of relevant information can be found at
http://www.rsa.com .

SAFER
SAFER-SK

Safer and Safer-SK are 64-bit block ciphers with a 64 or 128-bit key and have the
cryptlib algorithm identifier CRYPT_ALGO_SAFER.

SHA
SHA is a message digest/hash algorithm with a digest/hash size of 160 bits and has
the cryptlib algorithm identifier CRYPT_ALGO_SHA.

Skipjack
Skipjack is a 64-bit block cipher with an 80-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_SKIPJACK.

CRYPT_ALGO 171

Data Types and Constants
This section describes the data types and constants used by cryptlib.

CRYPT_ALGO
The CRYPT_ALGO is used to identify a particular encryption algorithm. More
information on the individual algorithm types can be found in “Algorithms and
Modes” on page 158.

Value Description

CRYPT_ALGO_BLOWFISH Blowfish

CRYPT_ALGO_CAST CAST-128

CRYPT_ALGO_DES DES

CRYPT_ALGO_3DES Triple DES

CRYPT_ALGO_IDEA IDEA

CRYPT_ALGO_RC2 RC2

CRYPT_ALGO_RC4 RC4

CRYPT_ALGO_RC5 RC5

CRYPT_ALGO_SAFER Safer/Safer-SK

CRYPT_ALGO_SKIPJACK Skipjack

CRYPT_ALGO_DH Diffie-Hellman

CRYPT_ALGO_DSA DSA

CRYPT_ALGO_ELGAMAL ElGamal

CRYPT_ALGO_RSA RSA

CRYPT_ALGO_MD2 MD2

CRYPT_ALGO_MD4 MD4

CRYPT_ALGO_MD5 MD5

CRYPT_ALGO_MDC2 MDC-2

CRYPT_ALGO_RIPEMD160 RIPE-MD 160

CRYPT_ALGO_SHA SHA/SHA-1

CRYPT_ALGO_HMAC_MD5 HMAC-MD5

CRYPT_ALGO_HMAC_RIPEMD160 HMAC-RIPEMD-160

CRYPT_ALGO_HMAC_SHA HMAC-SHA

CRYPT_ALGO_VENDOR1
CRYPT_ALGO_VENDOR2
CRYPT_ALGO_VENDOR3

Optional vendor-defined
algorithms.

CRYPT_ALGO_FIRST_-
CONVENTIONAL

CRYPT_ALGO_LAST_-
CONVENTIONAL

First and last possible
conventional encryption algorithm
type.

CRYPT_ALGO_FIRST_PKC
CRYPT_ALGO_LAST_PKC

First and last possible public-key
algorithm type.

Data Types and Constants172

Value Description
CRYPT_ALGO_FIRST_HASH
CRYPT_ALGO_LAST_HASH

First and last possible hash
algorithm type.

CRYPT_ALGO_FIRST_MAC
CRYPT_ALGO_LAST_MAC

First and last possible MAC
algorithm type.

CRYPT_ATTRIBUTE_TYPE
The CRYPT_ATTRIBUTE_TYPE is used to identify the attribute associated with a
cryptlib object. Object attributes are introduced in “Working with Object Attributes”
on page 17 and are used extensively throughout this manual.

CRYPT_CERTFORMAT_TYPE
The CRYPT_CERTFORMAT_TYPE is used to specify the format for exported
certificate objects. More information on certificates and exporting certificate objects
is given in “Certificate Management” on page 76.

Value Description

CRYPT_CERTFORMAT_-
CERTCHAIN

Certificate object encoded as a PKCS
#7 certificate chain. This encoding is
only possible for objects which are
certificates or certificate chains.

CRYPT_CERTFORMAT_-
CERTIFICATE

Certificate object encoded according
to the ASN.1 distinguished encoding
rules (DER).

CRYPT_CERTFORMAT_SMIME_-
CERTIFICATE

S/MIME data format. The certificate
object is encoded as for the basic
CRYPT_CERTFORMAT_type
format, and an extra layer of base64
encoding with MIME wrapping is
added. This format is required by
some web browsers and applications.

CRYPT_CERTFORMAT_TEXT_-
CERTCHAIN

CRYPT_CERTFORMAT_TEXT_-
CERTIFICATE

Base64-encoded text format. The
certificate object is encoded as for the
basic CRYPT_CERTFORMAT_type
format, and an extra layer of base64
encoding with BEGIN/END
CERTIFICATE tags is added. This
format is required by some web
browsers and applications.

CRYPT_CERTTYPE_TYPE
The CRYPT_CERTTYPE_TYPE is used to specify the type of a certificate object,
including certificate-like objects like PKCS #7/CMS signing attributes and OCSP
messages. More information on certificates and certificate objects is given in
“Certificate Management” on page 76.

Value Description

CRYPT_CERTTYPE_-
ATTRIBUTE_CERT

Attribute certificate.

CRYPT_CERTTYPE_CERTCHAIN PKCS #7 certificate chain.

CRYPT_CERTTYPE_-
CERTIFICATE

Certificate.

CRYPT_CERTTYPE_- PKCS #10 certification request.

CRYPT_DEVICE_TYPE 173

Value Description
CERTREQUEST

CRYPT_CERTTYPE_CMS_-
ATTRIBUTES

PKCS #7/CMS attributes.

CRYPT_CERTTYPE_CRL CRL

CRYPT_CERTTYPE_OCSP_-
REQUEST

CRYPT_CERTTYPE_OCSP_-
RESPONSE

OCSP request and response (not
currently available).

CRYPT_DEVICE_TYPE
The CRYPT_DEVICE_TYPE is used to specify encryption hardware or an
encryption device such as a PCMCIA or smart card. More information on encryption
devices is given in “Encryption Devices and Modules” on page 140.

Value Description

CRYPT_DEVICE_FORTEZZA Fortezza card.

CRYPT_DEVICE_PKCS11 PKCS #11 crypto token.

CRYPT_FORMAT_TYPE
The CRYPT_FORMAT_TYPE is used to identify a data format type for exported
keys, signatures, and encryption envelopes. Of the formats supported by cryptlib, the
cryptlib native format is the most flexible and is the recommended format unless you
require compatibility with a specific security standard. More information on the
different formats is given in “Enveloping Concepts” on page 22, “Exchanging Keys”
on page 66, and “Signing Data” on page 72.

Value Description

CRYPT_FORMAT_CRYPTLIB cryptlib native format.

CRYPT_FORMAT_PGP PGP format (not currently
available).

CRYPT_FORMAT_CMS
CRYPT_FORMAT_PKCS7

PKCS #7/CMS format.

CRYPT_FORMAT_SMIME As CMS but with S/MIME MSG-
specific behaviour.

CRYPT_KEYID_TYPE
The CRYPT_KEYID_TYPE is used to identify the type of key identifier which is
being passed to cryptGetPublicKey or cryptGetPrivateKey . More information on
using these functions to read keys from keysets is given in “Key Databases” on page
40

Value Description

CRYPT_KEYID_NAME The name of the key owner.

CRYPT_KEYID_EMAIL The email address of the key
owner.

CRYPT_KEYOPT
The CRYPT_KEYOPT is used to contain keyset option flags passed to
cryptOpenKeyset or cryptOpenKeysetEx. The keyset options may be used to
optimise access to keysets by enabling cryptlib to perform enhanced transaction
management in cases where, for example, read-only access to a database is desired.

Data Types and Constants174

Because this can improve performance when accessing the keyset, you should always
specify whether you will be using the keyset in a restricted access mode when you
call cryptOpenKeyset or cryptOpenKeysetEx.

More information on using these options when opening a connection to a keyset is
given in “Key Databases” on page 40

Value Description

CRYPT_KEYOPT_CREATE Create a new keyset. This option is only
valid for writeable keyset types, which
includes keysets implemented as
relational databases, cryptlib private key
files, and smart cards.

CRYPT_KEYOPT_NONE No special access options.

CRYPT_KEYOPT_READONLY Read-only keyset access. This option is
turned on by default for non-writeable
keyset types, which includes X.509/SET
flat files, PGP public and private
keyrings, and other keyset types which
have read-only restrictions enforced by
the operating system or user access
rights.

CRYPT_KEYSET_TYPE
The CRYPT_KEYSET_TYPE is used to identify a keyset type (or, more specifically,
the format and access method used to access a keyset) when used with
cryptOpenKeyset or cryptOpenKeysetEx. Some keyset types may be unavailable
on some systems (for example CRYPT_KEYSET_ODBC is limited to Windows
machines; CRYPT_KEYSET_POSTGRES is mostly limited to Unix machines).
More information on keysets is given in “Key Databases” on page 40.

Value Description

CRYPT_KEYSET_FILE A flat-file keyset, either an
individual X.509/SET key stored
in a file, or a PGP public or
private keyring or a cryptlib
private key file.

CRYPT_KEYSET_LDAP LDAP directory service.

CRYPT_KEYSET_SMARTCARD Smart card key carrier.

CRYPT_KEYSET_MSQL mSQL RDBMS.
CRYPT_KEYSET_MYSQL MySQL RDBMS.
CRYPT_KEYSET_ODBC Generic ODBC interface.
CRYPT_KEYSET_ORACLE Oracle RDBMS.
CRYPT_KEYSET_POSTGRES Postgres RDBMS.

CRYPT_MODE
The CRYPT_MODE is used to identify a particular encryption mode. More
information on the individual modes can be found in “Algorithms and Modes” on
page 158.

Value Description

CRYPT_MODE_NONE No encryption (hashes and
MAC’s).

CRYPT_MODE_STREAM Stream cipher

CRYPT_OBJECT_TYPE 175

Value Description

CRYPT_MODE_ECB ECB

CRYPT_MODE_CBC CBC

CRYPT_MODE_CFB CFB

CRYPT_MODE_OFB OFB

CRYPT_MODE_PKC Public-key encryption/digital
signature.

CRYPT_MODE_FIRST_-
CONVENTIONAL

CRYPT_MODE_LAST_-
CONVENTIONAL

First and last possible
conventional encryption mode.

CRYPT_OBJECT_TYPE
The CRYPT_OBJECT_TYPE is used to identify the type of an exported key or
signature object which has been created with cryptExportKey or
cryptCreateSignature. More information on working with these objects is given in
“Exchanging Keys” on page 66, and “Signing Data” on page 72.

Value Description

CRYPT_OBJECT_ENCRYPTED_KEYConventionally exported key
object..

CRYPT_OBJECT_KEYAGREEMENT Key agreement object.

CRYPT_OBJECT_PKCENCRYPTED_-
KEY

Public-key exported key object.

CRYPT_OBJECT_SIGNATURE Signature object.

Data Size Constants
The following values define various maximum lengths for data objects which are
used in cryptlib. These can be used for allocating memory to contain the objects, or
as a check to ensure that an object isn’t larger than the maximum size allowed by
cryptlib.

Constant Description

CRYPT_MAX_HASHSIZE Maximum hash size in bytes.

CRYPT_MAX_IVSIZE Maximum initialisation vector size in bytes.

CRYPT_MAX_KEYSIZE Maximum conventional-encryption key size
in bytes.

CRYPT_MAX_PKCSIZE Maximum public-key component size in
bytes. This value specifies the maximum
size of individual components, since
public/private keys are usually composed of
a number of components the overall size is
larger than this.

CRYPT_MAX_TEXTSIZE Maximum size of a text string (eg a public or
private key owner name) in characters. This
defines the string size in characters rather
than bytes, so a Unicode string of size
CRYPT_MAX_TEXTSIZE could be twice
as long as an ASCII string of size
CRYPT_MAX_TEXTSIZE. This value

Data Types and Constants176

Constant Description
does not include the terminating null
character in C strings.

Miscellaneous Constants
The following values are used for various purposes by cryptlib, for example to
specify that default parameter values are to be used, that the given parameter is
unused and can be ignored, or that a special action should be taken in response to
seeing this parameter.

Constant Description

CRYPT_COMPONENTS_-
BIGENDIAN

CRYPT_COMPONENTS_-
LITTLENDIAN

The endianness of the external
components of a public/private key
when passed to
cryptInitComponents() /
cryptSetComponent() .

CRYPT_KEYTYPE_PRIVATE
CRYPT_KEYTYPE_PUBLIC

Whether the key being passed to
cryptInitComponents() /
cryptSetComponent() is a
public or private key.

CRYPT_RANDOM_FASTPOLL
CRYPT_RANDOM_SLOWPOLL

The type of polling to perform to
update the internal random data pool.

CRYPT_UNUSED A value indicating that this parameter
is unused and can be ignored.

CRYPT_USE_DEFAULT A value indicating that the default
setting for this parameter should be
used.

CRYPT_OBJECT_INFO Structure 177

Data Structures
This chapter describes the data structures used by cryptlib.

CRYPT_OBJECT_INFO Structure
The CRYPT_OBJECT_INFO structure is used with cryptQueryObject to return
information about an data object created with cryptExportKey or
cryptCreateSignature. Some of the fields are only valid for certain algorithm and
mode combinations, or for some types of data objects. If they don’t apply to the
given algorithm and mode or context, they will be set to CRYPT_ERROR, null, or
filled with zeroes as appropriate.

Field Description

CRYPT_OBJECT_TYPE objectTypeData object type.
CRYPT_ALGO cryptAlgo Encryption/signature algorithm.
CRYPT_MODE cryptMode Encryption/signature mode.

CRYPT_ALGO hashAlgo The hash algorithm used to hash the
data if the data object is a signature
object.

unsigned char salt[
CRYPT_MAX_HASHSIZE]

int saltSize

The salt used to derive the
export/import key if the object is a
conventionally encrypted key object

CRYPT_PKCINFO Structures
The CRYPT_PKCINFO structures are used to load public and private keys (which
contain multiple key components) into encryption contexts by setting them as the
CRYPT_CTXINFO_KEY attribute. All fields are multiprecision integer values
which are set using the cryptSetComponent() macro.

The CRYPT_PKCINFO_DLP structure is used to load keys for algorithms based on
the discrete logarithm problem, which includes keys for Diffie-Hellman, DSA, and
Elgamal. The structure contains the following fields:

Field Description

p Prime modulus.

q Prime divisor.

g Element of order q mod p

x Private random integer.

y Public random integer, gx mod p.

The CRYPT_PKCINFO_RSA structure is used to load Rivest-Shamir-Adelman
public-key encryption keys and contains the following fields:

Field Description

n Modulus.

e Public exponent.

D Private exponent.

P Prime factor 1.

Q Prime factor 2.

U CRT coefficient q-1 mod p.

e1 Private exponent 1 (PKCS #1), d mod (p-1).

Data Structures178

Field Description
e2 Private exponent 2 (PKCS #1) , d mod (q-1).

The e1 and e2 components of CRYPT_PKCINFO_RSA may not be present in some
keys. cryptlib will make use of them if they are present, but can also work without
them. The loading of private keys is slightly slower if these values aren’t present
since cryptlib needs to generate them itself.

CRYPT_QUERY_INFO Structure
The CRYPT_QUERY_INFO structure is used with cryptQueryCapability to return
information about an encryption algorithm or an encryption context or key-related
certificate object (for example a public-key certificate or certification request). Some
of the fields are only valid for certain algorithm types, or for some types of
encryption contexts. If they don’t apply to the given algorithm or context, they will
be set to CRYPT_ERROR, null, or filled with zeroes as appropriate.

Field Description

char algoName[
CRYPT_MAX_TEXTSIZE]

Algorithm name.

int blockSize Algorithm block size in bytes.

int minKeySize
int keySize
int maxKeySize

The minimum, recommended, and
maximum key size in bytes (if the
algorithm uses a key).

cryptAddCertExtension 179

Function Reference

cryptAddCertExtension
The cryptAddCertExtension function is used to add a generic blob-type certificate
extension to a certificate object.

int cryptAddCertExtension(const CRYPT_CERTIFICATE certificate, const char *oid, const int
criticalFlag, const void *extension, const int extensionLength);

Parameters certificate
The certificate object to which to add the extension.

oid
The object identifier value for the extension being added, specified as a sequence of
integers.

criticalFlag
The critical flag for the extension being added.

extension
The address of the extension data.

extensionLength
The length in bytes of the extension data.

Remarks cryptlib directly supports extensions from X.509, PKIX, SET, and various vendors
itself, so you shouldn’t use this function for anything other than unknown, proprietary
extensions.

See also cryptGetCertExtension, cryptDeleteCertExtension.

cryptAddPrivateKey
The cryptAddPrivateKey function is used to add a users private key to a keyset.

int cryptGetPrivateKey(const CRYPT_KEYSET keyset, const CRYPT_CONTEXT cryptContext,
const char *password);

Parameters keyset
The keyset object to which to write the key.

cryptContext
The private key context to write to the keyset.

password
The password used to encrypt the private key, or null if no encryption is required.

Remarks The use of a password to encrypt the private key is strongly recommended, even for
supposedly secure keyset types such as smart cards, since calling the function without
a password would leave the private key in an unprotected state in the keyset.

See also cryptAddPublicKey , cryptDeleteKey, cryptGetPrivateKey , cryptGetPublicKey.

cryptAddPublicKey
The cryptAddPublicKey function is used to add a users public key certificate to a
keyset.

int cryptAddPublicKey(const CRYPT_KEYSET keyset, CRYPT_CERTIFICATE certificate);

Parameters keyset
The keyset object from which to read the key.

Function Reference180

certificate
The certificate to add to the keyset.

Remarks This function requires a key certificate object rather than an encryption context, since
the certificate contains additional identification information which is used when the
certificate is written to the keyset.

See also cryptAddPrivateKey , cryptDeleteKey, cryptGetPrivateKey , cryptGetPublicKey.

cryptAddRandom
The cryptAddRandom function is used to add random data to the internal random
data pool maintained by cryptlib, or to tell cryptlib to poll the system for random
information. The random data pool is used to generate session keys and
public/private keys, and by several of the high-level cryptlib functions.

int cryptAddRandom(const void *randomData, const int randomDataLength);

Parameters randomData
The address of the random data to be added, or null if cryptlib should poll the
system for random information.

randomDataLength
The length of the random data being added, or CRYPT_RANDOM_SLOWPOLL
to perform an in-depth, slow poll or CRYPT_RANDOM_FASTPOLL to perform a
less thorough but faster poll for random information.

cryptAsyncCancel
The cryptAsyncCancel function is used to cancel an asynchronous operation on an
object.

int cryptAsyncCancel(const CRYPT_HANDLE cryptObject);

Parameters cryptObject
The object on which an asynchronous operation is to be cancelled.

Remarks Because of the asynchronous nature of the operation being performed the cancel may
not take effect immediately. In the worst case it may take a second or two for the
cancel command to be processed by the object.

See also cryptAsyncQuery, cryptGenerateKeyAsync, cryptGenerateKeyAsyncEx.

cryptAsyncQuery
The cryptAsyncQuery function is used to obtain the status of an asynchronous
operation on an object.

int cryptAsyncQuery(const CRYPT_HANDLE cryptObject);

Parameters cryptObject
The object to be queried.

Remarks cryptAsyncQuery will return CRYPT_ERROR_BUSY if an asynchronous operation
is in progress and the object is unavailable for use until the operation completes.

See also cryptAsyncCancel, cryptGenerateKeyAsync, cryptGenerateKeyAsyncEx.

cryptCheckCert
The cryptCheckCert function is used to check the signature on a certificate object,
or to verify a certificate object against a CRL or a keyset containing a CRL.

cryptCheckSignature 181

int cryptCheckCert(const CRYPT_CERTIFICATE certificate, const CRYPT_HANDLE
sigCheckKey);

Parameters certificate
The certificate container object which contains the certificate item to check.

sigCheckKey
A public-key context or key certificate object containing the public key used to
verify the signature, or alternatively CRYPT_UNUSED if the certificate item is
self-signed. If the certificate is to be verified against a CRL, this should be a
certificate object or keyset containing the CRL.

Remarks If the signature data is invalid, the function will return CRYPT_ERROR_-
BADDATA. If the signature itself is invalid, the function will return CRYPT_-
ERROR_BADSIG. If the certificate is being checked against a CRL and has been
revoked, the function will return CRYPT_ERROR_INVALID.

See also cryptSignCert.

cryptCheckSignature
The cryptCheckSignature function is used to check the digital signature on a piece
of data. Due to various speed and security requirements, what is actually checked is
the signature on the hash of the data rather than the signature on the data itself.

int cryptCheckSignature(void *signature, const CRYPT_HANDLE sigCheckKey, const
CRYPT_CONTEXT hashContext);

Parameters signature
The address of a buffer which contains the signature.

sigCheckKey
A public-key context or key certificate object containing the public key used to
verify the signature.

hashContext
A hash context containing the hash of the data.

Remarks If the signature data is invalid, the function will return CRYPT_ERROR_-
BADDATA. If the signature itself is invalid, the function will return CRYPT_-
ERROR_BADSIG.

See also cryptCheckSignatureEx, cryptCreateSignature, cryptCreateSignatureEx,
cryptQueryObject .

cryptCheckSignatureEx
The cryptCheckSignatureEx function is used to check the digital signature on a
piece of data with extended control over the signature information. Due to various
speed and security requirements, what is actually checked is the signature on the hash
of the data rather than the signature on the data itself.

int cryptCheckSignatureEx(void *signature, const CRYPT_HANDLE sigCheckKey, const
CRYPT_CONTEXT hashContext, CRYPT_HANDLE *extraData);

Parameters signature
The address of a buffer which contains the signature.

sigCheckKey
A public-key context or key certificate object containing the public key used to
verify the signature.

hashContext
A hash context containing the hash of the data.

Function Reference182

extraData
The address of a certificate object containing extra information which is included
with the signature, or null if you don’t require this information.

Remarks If the signature data is invalid, the function will return CRYPT_ERROR_-
BADDATA. If the signature itself is invalid, the function will return CRYPT_-
ERROR_BADSIG.

See also cryptCheckSignature, cryptCreateSignature, cryptCreateSignatureEx,
cryptQueryObject .

cryptCreateCert
The cryptCreateCert function is used to create a certificate object which contains a
certificate, certification request, certificate chain, CRL, or other certificate-like
object.

int cryptCreateCert(CRYPT_CERTIFICATE *cryptCert, const CRYPT_CERT_TYPE certType
);

Parameters cryptCert
The address of the certificate object to be created.

certType
The type of certificate item which will be created in the certificate object.

See also cryptDestroyCert .

cryptCreateContext
The cryptCreateContext function is used to create an encryption context for a given
encryption algorithm.

int cryptCreateContext(CRYPT_CONTEXT *cryptContext, const CRYPT_ALGO cryptAlgo);

Parameters cryptContext
The address of the encryption context to be created.

cryptAlgo
The encryption algorithm to be used in the context.

See also cryptDestroyContext, cryptDeviceCreateContext.

cryptCreateEnvelope
The cryptCreateEnvelope function is used to create an envelope object for
encrypting or decrypting, signing or signature checking, compressing or
decompressing, or otherwise processing data.

int cryptCreateEnvelope(CRYPT_ENVELOPE *cryptEnvelope, const
CRYPT_FORMAT_TYPE formatType);

Parameters cryptEnvelope
The address of the envelope to be created.

formatType
The data format for the enveloped data.

See also cryptDestroyEnvelope.

cryptCreateSignature 183

cryptCreateSignature
The cryptCreateSignature function digitally signs a piece of data. Due to various
speed and security requirements, what is actually signed is the hash of the data rather
than the data itself. The signature is placed in a buffer in a portable format which
allows it to be checked using cryptCheckSignature.

int cryptCreateSignature(void *signature, int *signatureLength, const CRYPT_CONTEXT
signContext, const CRYPT_CONTEXT hashContext);

Parameters signature
The address of a buffer to contain the signature. If you set this parameter to null,
cryptCreateSignature will return the length of the signature in signatureLength
without actually generating the signature.

signatureLength
The address of the signature length.

signContext
A public-key encryption or signature context containing the private key used to sign
the data.

hashContext
A hash context containing the hash of the data to sign.

See also cryptCheckSignature, cryptCheckSignatureEx, cryptCreateSignatureEx,
cryptQueryObject .

cryptCreateSignatureEx
The cryptCreateSignatureEx function digitally signs a piece of data with extended
control over the signature format. Due to various speed and security requirements,
what is actually signed is the hash of the data rather than the data itself. The
signature is placed in a buffer in a portable format which allows it to be checked
using cryptCheckSignatureEx.

int cryptCreateSignatureEx(void *signature, int *signatureLength, const
CRYPT_FORMAT_TYPE formatType, const CRYPT_CONTEXT signContext,
const CRYPT_CONTEXT hashContext, const CRYPT_CERTIFICATE
extraData);

Parameters signature
The address of a buffer to contain the signature. If you set this parameter to null,
cryptCreateSignature will return the length of the signature in signatureLength
without actually generating the signature.

signatureLength
The address of the signature length.

formatType
The format of the signature to create.

signContext
A public-key encryption or signature context containing the private key used to sign
the data.

hashContext
A hash context containing the hash of the data to sign.

extraData
Extra information to include with the signature or CRYPT_UNUSED if the format
is the default signature format (which doesn’t use the extra data) or
CRYPT_USE_DEFAULT if the signature isn’t the default format and you want to
use the default extra information.

Function Reference184

See also cryptCheckSignature, cryptCheckSignatureEx, cryptCreateSignature,
cryptQueryObject .

cryptDecrypt
The cryptDecrypt function is used to decrypt or hash data.

int cryptDecrypt(const CRYPT_CONTEXT cryptContext, const void *buffer, const int length);

Parameters cryptContext
The encryption context to use to decrypt or hash the data.

buffer
The address of the data to be decrypted or hashed.

length
The length in bytes of the data to be decrypted or hashed. For public-key
encryption and signature algorithms the data length is determined by the key size of
the algorithm and this parameter should be set to CRYPT_UNUSED.

Remarks Public-key encryption and signature algorithms have special data formatting
requirements which need to be taken into account when this function is called. You
shouldn’t use this function with these algorithm types, but instead should use the
higher-level functions cryptCreateSignature, cryptCheckSignature,
cryptExportKey , and cryptImportKey .

See also cryptEncrypt .

cryptDeleteAttribute
The cryptDeleteAttribute function is used to delete an attribute from an object.

int cryptDeleteAttribute(const CRYPT_HANDLE cryptObject, const
CRYPT_ATTRIBUTE_TYPE attributeType);

Parameters certificate
The object from which to delete the attribute.

attributeType
The attribute to delete.

Remarks Most attributes are always present and can’t be deleted, in general only certificate
attributes are deletable.

See also cryptGetAttribute , cryptGetAttributeString , cryptSetAttribute ,
cryptSetAttributeString .

cryptDeleteCertExtension
The cryptGetCertExtension function is used to delete a generic blob-type certificate
extension from a certificate object.

int cryptDeleteCertExtension(const CRYPT_CERTIFICATE certificate, const char *oid);

Parameters certificate
The certificate object from which to delete the extension.

oid
The object identifier value for the extension being deleted, specified as a sequence
of integers.

Remarks cryptlib directly supports extensions from X.509, PKIX, SET, and various vendors
itself, so you shouldn’t use this function for anything other than unknown, proprietary
extensions.

cryptDeleteKey 185

See also cryptAddCertExtension , cryptGetCertExtension.

cryptDeleteKey
The cryptDeleteKey function is used to delete a key or certificate from a keyset or
device. The key to delete is identified either through the key owners name or their
email address.

int cryptDeleteKey(const CRYPT_HANDLE cryptObject, const CRYPT_KEYID_TYPE
keyIDtype, const void *keyID);

Parameters cryptObject
The keyset or device object from which to delete the key.

keyIDtype
The type of the key ID, either CRYPT_KEYID_NAME for the name or key label,
or CRYPT_KEYID_EMAIL for the email address.

keyID
The key ID of the key to delete.

See also cryptAddPrivateKey , cryptAddPublicKey , cryptGetPrivateKey ,
cryptGetPublicKey.

cryptDestroyCert
The cryptDestroyCert function is used to destroy a certificate object after use. This
erases all keying and security information used by the object and frees up any
memory it uses.

int cryptDestroyCert(const CRYPT_CERTIFICATE cryptCert);

Parameters cryptCert
The certificate object to be destroyed.

See also cryptCreateCert .

cryptDestroyContext
The cryptDestroyContext function is used to destroy an encryption context after use.
This erases all keying and security information used by the context and frees up any
memory it uses.

int cryptDestroyContext(const CRYPT_CONTEXT cryptContext);

Parameters cryptContext
The encryption context to be destroyed.

See also cryptCreateContext, cryptDeviceCreateContext.

cryptDestroyEnvelope
The cryptDestroyEnvelope function is used to destroy an envelope after use. This
erases all keying and security information used by the envelope and frees up any
memory it uses.

int cryptDestroyEnvelope(const CRYPT_ENVELOPE cryptEnvelope);

Parameters cryptEnvelope
The envelope to be destroyed.

See also cryptCreateEnvelope.

Function Reference186

cryptDestroyObject
The cryptDestroyObject function is used to destroy a cryptlib object after use. This
erases all security information used by the object, closes any open data sources, and
frees up any memory it uses.

int cryptDestroyObject(const CRYPT_HANDLE cryptObject);

Parameters cryptObject
The object to be destroyed.

Remarks This function is a generic form of the specialised functions which destroy/close
specific cryptlib object types such as encryption contexts and certificate and keyset
objects. In some cases it may not be possible to determine the exact type of an object
(for example the keyset access functions may return a key certificate object or only an
encryption context depending on the keyset type), cryptDestroyObject can be used
to destroy an object of an unknown type.

See also cryptCloseKeyset, cryptDestroyContext, cryptDestroyCert,
cryptDestroyEnvelope.

cryptDeviceClose
The cryptDeviceOpen function is used to destroy a device object after use. This
closes the connection to the device and frees up any memory it uses.

int cryptDeviceClose(const CRYPT_DEVICE device);

Parameters device
The device object to be destroyed.

See also cryptDeviceOpen, cryptDeviceOpenEx.

cryptDeviceControlEx
The cryptDeviceControlEx function is used to perform a control function such as
user authentication on a crypto device with extended control over the device control
parameters.

int cryptDeviceControlEx(const CRYPT_DEVICE device, const
CRYPT_DEVICECONTROL_TYPE controlType, const void *data1, const int
data1Length, const void *data2, const int data2Length);

Parameters device
The device object to perform the control function on.

controlType
The control function to perform on the device.

data1
The first data item to send to the device, or null if none is required.

data1Length
The length of the first data item to send to the device, or CRYPT_UNUSED if none
is required.

data2
The second data item to send to the device, or null if none is required.

data2Length
The length of the second data item to send to the device, or CRYPT_UNUSED if
none is required.

cryptDeviceCreateContext 187

cryptDeviceCreateContext
The cryptDeviceCreateContext function is used to create an encryption context for a
given encryption algorithm via an encryption device.

int cryptDeviceCreateContext(const CRYPT_DEVICE cryptDevice, CRYPT_CONTEXT
*cryptContext, const CRYPT_ALGO cryptAlgo);

Parameters cryptDevice
The device object used to create the encryption context.

cryptContext
The address of the encryption context to be created.

cryptAlgo
The encryption algorithm to be used in the context.

See also cryptCreateContext, cryptDestroyContext.

cryptDeviceOpen
The cryptDeviceOpen function is used to establish a connection to a crypto device
such as a crypto hardware accelerator or a PCMCIA card or smart card.

int cryptDeviceOpen(CRYPT_DEVICE *device, const CRYPT_DEVICE_TYPE deviceType,
const char *name);

Parameters device
The address of the device object to be created.

deviceType
The device type to be used.

name
The name of the device, or null if a name isn’t required.

See also cryptDeviceClose.

cryptEncrypt
The cryptEncrypt function is used to encrypt or hash data.

int cryptEncrypt(const CRYPT_CONTEXT cryptContext, const void *buffer, const int length);

Parameters cryptContext
The encryption context to use to encrypt or hash the data.

buffer
The address of the data to be encrypted or hashed.

length
The length in bytes of the data to be encrypted or hashed. For public-key
encryption and signature algorithms the data length is determined by the key size of
the algorithm and this parameter should be set to CRYPT_UNUSED.

Remarks Public-key encryption and signature algorithms have special data formatting
requirements which need to be taken into account when this function is called. You
shouldn’t use this function with these algorithm types, but instead should use the
higher-level functions cryptCreateSignature, cryptCheckSignature,
cryptExportKey , and cryptImportKey .

See also cryptDecrypt .

Function Reference188

cryptEnd
The cryptEnd function is used to shut down cryptlib after use. This function should
be called after you have finished using cryptlib.

int cryptEnd(void);

Parameters None

See also cryptInit , cryptInitEx .

cryptExportCert
The cryptExportCert function is used to export an encoded signed public key
certificate, certification request, CRL, or other certificate-related item from a
certificate container object.

int cryptExportCert(void *certObject, int *certObjectLength, const
CRYPT_CERTFORMAT_TYPE certFormatType, const
CRYPT_CERTIFICATE certificate);

Parameters certObject
The address of a buffer to contain the encoded certificate.

certObjectLength
The address of the exported certificate length.

certFormatType
The encoding format for the exported certificate object.

certificate
The address of the certificate object to be exported.

Remarks The certificate object needs to have all the required fields filled in and must then be
signed using cryptSignCert before it can be exported.

See also cryptImportCert .

cryptExportKey
The cryptExportKey function is used to share a session key between two parties by
either exporting a session key from a context in a secure manner or by establishing a
new shared key. The exported/shared key is placed in a buffer in a portable format
which allows it to be imported back into a context using cryptImportKey .

If an existing session key is to be shared, it can be exported using either a public key
or key certificate or a conventional encryption key. If a new session key is to be
established, it can be done using a Diffie-Hellman encryption context.

int cryptExportKey(void *encryptedKey, int *encryptedKeyLength, const CRYPT_HANDLE
exportKey, const CRYPT_CONTEXT sessionKeyContext);

Parameters encryptedKey
The address of a buffer to contain the exported key. If you set this parameter to
null, cryptExportKey will return the length of the exported key in
exportedKeyLength without actually exporting the key.

exportedKeyLength
The address of the exported key length.

exportKey
A public-key or conventional encryption context or key certificate object containing
the public or conventional key used to export the session key.

cryptExportKeyEx 189

sessionKeyContext
An encryption context containing the session key to export (if the key is to be
shared) or an empty context with no key loaded (if the key is to be established).

Remarks A session key can be shared in one of two ways, either by one party exporting an
existing key and the other party importing it, or by both parties agreeing on a key to
use. The export/import process requires an existing session key and a public/private
or conventional encryption context or key certificate object to export/import it with.
The key agreement process requires a Diffie-Hellman context and an empty session
key context (with no key loaded) which the new shared session key is generated into.

See also cryptExportKeyEx , cryptImportKey , cryptImportKeyEx , cryptQueryObject .

cryptExportKeyEx
The cryptExportKey function is used to share a session key between two parties by
either exporting a session key from a context in a secure manner or by establishing a
new shared key, with extented control over the exported key format. The
exported/shared key is placed in a buffer in a portable format which allows it to be
imported back into a context using cryptImportKeyEx .

If an existing session key is to be shared, it can be exported using either a public key
or key certificate or a conventional encryption key. If a new session key is to be
established, it can be done using a Diffie-Hellman encryption context.

int cryptExportKeyEx(void *encryptedKey, int *encryptedKeyLength, const
CRYPT_FORMAT_TYPE formatType, const CRYPT_HANDLE exportKey,
const CRYPT_CONTEXT sessionKeyContext);

Parameters encryptedKey
The address of a buffer to contain the exported key. If you set this parameter to
null, cryptExportKeyEx will return the length of the exported key in
exportedKeyLength without actually exporting the key.

exportedKeyLength
The address of the exported key length.

formatType
The format for the exported key.

exportKey
A public-key or conventional encryption context or key certificate object containing
the public or conventional key used to export the session key.

sessionKeyContext
An encryption context containing the session key to export (if the key is to be
shared) or an empty context with no key loaded (if the key is to be established).

Remarks A session key can be shared in one of two ways, either by one party exporting an
existing key and the other party importing it, or by both parties agreeing on a key to
use. The export/import process requires an existing session key and a public/private
or conventional encryption context or key certificate object to export/import it with.
The key agreement process requires a Diffie-Hellman context and an empty session
key context (with no key loaded) which the new shared session key is generated into.

See also cryptExportKey , cryptImportKey , cryptImportKeyEx , cryptQueryObject .

cryptGenerateKey
The cryptGenerateKey function is used to generate a new key into an encryption
context.

int cryptGenerateKey(const CRYPT_CONTEXT cryptContext);

Function Reference190

Parameters cryptContext
The encryption context into which the key is to be generated.

Remarks Hash contexts don’t require keys, so an attempt to generate a key into a hash context
will return CRYPT_ERROR_NOTAVAIL.

cryptGenerateKey will generate a key of a length appropriate for the algorithm
being used into an encryption context. If you want to specify the generation of a key
of a particular length, you should use cryptGenerateKeyEx instead of this function.

The generation of large public-key encryption or digital signature keys can take quite
some time. If the environment you are working in supports background processing,
you should use cryptGenerateKeyAsync to generate the key instead.

See also cryptGenerateKeyAsync, cryptGenerateKeyAsyncEx, cryptGenerateKeyEx.

cryptGenerateKeyAsync
The cryptGenerateKey function is used to asynchronously generate a new key into
an encryption context.

int cryptGenerateKeyAsync(const CRYPT_CONTEXT cryptContext);

Parameters cryptContext
The encryption context into which the key is to be generated.

Remarks Hash contexts don’t require keys, so an attempt to generate a key into a hash context
will return CRYPT_ERROR_NOTAVAIL.

cryptGenerateKeyAsync will generate a key of a length appropriate for the
algorithm being used into an encryption context. If you want to specify the
generation of a key of a particular length, you should use
cryptGenerateKeyAsyncEx instead of this function.

See also cryptAsyncCancel, cryptAsyncQuery, cryptGenerateKeyAsyncEx.

cryptGenerateKeyAsyncEx
The cryptGenerateKeyAsyncEx function is used to asynchronously generate a new
key into an encryption context with extended control over the length of the key being
generated.

int cryptGenerateKeyAsyncEx(const CRYPT_CONTEXT cryptContext, const int keyLength);

Parameters cryptContext
The encryption context into which the key is to be generated.

keyLength
The length in bytes of the key to be generated.

Remarks Hash contexts don’t require keys, so an attempt to generate a key into a hash context
will return CRYPT_ERROR_NOTAVAIL.

cryptGenerateKeyAsyncEx will generate a key of a given length into an encryption
context. If you just want to generate a key of a length appropriate for the algorithm
being used, you should use cryptGenerateKeyAsync instead of this function.

See also cryptAsyncCancel, cryptAsyncQuery, cryptGenerateKeyAsync.

cryptGenerateKeyEx
The cryptGenerateKeyEx function is used to generate a new key into an encryption
context with extended control over the length of the key being generated.

int cryptGenerateKeyEx(const CRYPT_CONTEXT cryptContext, const int keyLength);

cryptGetAttribute 191

Parameters cryptContext
The encryption context into which the key is to be generated.

keyLength
The length in bytes of the key to be generated.

Remarks Hash contexts don’t require keys, so an attempt to generate a key into a hash context
will return CRYPT_ERROR_NOTAVAIL.

cryptGenerateKeyEx will generate a key of a given length into an encryption
context. If you just want to generate a key of a length appropriate for the algorithm
being used, you should use cryptGenerateKey instead of this function.

The generation of large public-key encryption or digital signature keys can take quite
some time. If the environment you are working in supports background processing,
you should use cryptGenerateKeyAsync to generate the key instead.

See also cryptGenerateKey, cryptGenerateKeyAsync, cryptGenerateKeyAsyncEx.

cryptGetAttribute
The cryptGetAttribute function is used to obtain a boolean or numeric value, status
information, or object from a cryptlib object.

int cryptGetAttribute(const CRYPT_HANDLE cryptObject, const CRYPT_ATTRIBUTE_TYPE
attributeType, int *value);

Parameters cryptObject
The object from which to read the boolean or numeric value, status information, or
object.

attributeType
The attribute which is being read.

value
The boolean or numeric value, status information, or object.

See also cryptDeleteAttribute , cryptGetAttributeString , cryptSetAttribute ,
cryptSetAttributeString .

cryptGetAttributeString
The cryptGetAttribute function is used to obtain attribute data from a cryptlib
object.

int cryptGetAttributeString(const CRYPT_HANDLE cryptObject, const
CRYPT_ATTRIBUTE_TYPE attributeType, void *value, int *valueLength);

Parameters cryptObject
The object from which to read the boolean or numeric value, status information, or
object.

attributeType
The attribute which is being read.

value
The address of a buffer to contain the data. If you set this parameter to null,
cryptGetAttributeString will return the length of the data in attributeLength
without returning the data itself.

valueLength
The length of the data in bytes.

See also cryptDeleteAttribute , cryptGetAttribute , cryptSetAttribute ,
cryptSetAttributeString .

Function Reference192

cryptGetCertExtension
The cryptGetCertExtension function is used to obtain a generic blob-type certificate
extension from a certificate object or public or private key with an attached
certificate.

int cryptGetCertExtension(const CRYPT_HANDLE cryptObject, const char *oid, int
*criticalFlag , void *extension, int *extensionLength);

Parameters cryptObject
The certificate or public/private key object from which to read the boolean or
numeric value.

oid
The object identifier value for the extension being queried, specified as a sequence
of integers.

criticalFlag
The critical flag for the extension being read.

extension
The address of a buffer to contain the data. If you set this parameter to null,
cryptGetCertExtension will return the length of the data in extensionLength
without returning the data itself.

extensionLength
The length in bytes of the extension data.

Remarks cryptlib directly supports extensions from X.509, PKIX, SET, and various vendors
itself, so you shouldn’t use this function for anything other than unknown, proprietary
extensions.

See also cryptAddCertExtension , cryptDeleteCertExtension.

cryptGetPrivateKey
The cryptGetPrivateKey function is used to create an encryption context from a
private key in a keyset or crypto device. The private key is identified either through
the key owners name or their email address.

int cryptGetPrivateKey(const CRYPT_HANDLE cryptHandle, CRYPT_CONTEXT
*cryptContext, const CRYPT_KEYID_TYPE keyIDtype, const void *keyID,
const char *password);

Parameters cryptHandle
The keyset or device from which to obtain the key.

cryptContext
The address of a context used to contain the private key.

keyIDtype
The type of the key ID, either CRYPT_KEYID_NAME for the name or key label,
or CRYPT_KEYID_EMAIL for the email address.

keyID
The key ID of the key to read.

password
The password required to decrypt the private key, or null if no password is required.

Remarks cryptGetPrivateKey will return CRYPT_ERROR_WRONGKEY if an incorrect
password is supplied. This can be used to determine whether a password is necessary
by first calling the function with a null password and then retrying the read with a
user-supplied password if the first call returns with CRYPT_ERROR_WRONGKEY.

See also cryptAddPrivateKey , cryptAddPublicKey , cryptDeleteKey, cryptGetPublicKey.

cryptGetPublicKey 193

cryptGetPublicKey
The cryptGetPublicKey function is used to create an encryption context from a
public key in a keyset or crypto device. The public key is identified either through
the key owners name or their email address.

int cryptGetPublicKey(const CRYPT_HANDLE cryptObject, CRYPT_HANDLE *publicKey,
const CRYPT_KEYID_TYPE keyIDtype, const void *keyID);

Parameters cryptObject
The keyset or device from which to obtain the key.

publicKey
The address of a context or object used to contain the public key or certificate.

keyIDtype
The type of the key ID, either CRYPT_KEYID_NAME for the name or key label,
or CRYPT_KEYID_EMAIL for the email address.

keyID
The key ID of the key to read.

Remarks The type of object in which the key is returned depends on the keyset or device from
which it is being read. Most sources will provide a key certificate object, but some
will return only an encryption context containing the key. Both types of object can be
passed to cryptCheckCert, cryptCreateSignature, or cryptExportKey .

See also cryptAddPrivateKey , cryptAddPublicKey , cryptDeleteKey,
cryptGetPrivateKey .

cryptImportCert
The cryptImportCert function is used to import an encoded certificate, certification
request, CRL, or other certificate-related item into a certificate container object.

int cryptImportCert(void *certObject, CRYPT_CERTIFICATE *certificate);

Parameters certObject
The address of a buffer which contains the encoded certificate.

certificate
The certificate object to be created using the imported certificate data.

See also cryptExportCert .

cryptImportKey
The cryptImportKey function is used to share a session key between two parties by
importing an encrypted session key which was previously exported with
cryptExportKey into an encryption context.

If an existing session key being shared, it can be imported using either a private key
or a conventional encryption key. If a new session key is being established, it can be
done using a Diffie-Hellman encryption context.

int cryptImportKey(void *encryptedKey, const CRYPT_CONTEXT importContext,
CRYPT_CONTEXT sessionKeyContext);

Parameters encryptedKey
The address of a buffer which contains the exported key created by
cryptExportKey .

importContext
A public-key or conventional encryption context containing the private or
conventional key required to import the session key.

Function Reference194

sessionKeyContext
The context used to contain the imported session key.

Remarks A session key can be shared in one of two ways, either by one party exporting an
existing key and the other party importing it, or by both parties agreeing on a key to
use. The export/import process requires an existing session key and a public/private
or conventional encryption context or key certificate object to export/import it with.
The key agreement process requires a Diffie-Hellman context and an empty session
key context (with no key loaded) which the new shared session key is generated into.

See also cryptExportKey , cryptExportKeyEx , cryptImportKey , cryptQueryObject .

cryptImportKeyEx
The cryptImportKeyEx function is used to share a session key between two parties
by importing an encrypted session key which was previously exported with
cryptExportKeyEx into an encryption context.

If an existing session key being shared, it can be imported using either a private key
or a conventional encryption key. If a new session key is being established, it can be
done using a Diffie-Hellman encryption context.

int cryptImportKeyEx(void *encryptedKey, const CRYPT_CONTEXT importContext,
CRYPT_CONTEXT sessionKeyContext);

Parameters encryptedKey
The address of a buffer which contains the exported key created by
cryptExportKeyEx .

importContext
A public-key or conventional encryption context containing the private or
conventional key required to import the session key.

sessionKeyContext
The context used to contain the imported session key.

Remarks A session key can be shared in one of two ways, either by one party exporting an
existing key and the other party importing it, or by both parties agreeing on a key to
use. The export/import process requires an existing session key and a public/private
or conventional encryption context or key certificate object to export/import it with.
The key agreement process requires a Diffie-Hellman context and an empty session
key context (with no key loaded) which the new shared session key is generated into.

See also cryptExportKey , cryptExportKeyEx , cryptImportKey , cryptQueryObject .

cryptInit
The cryptInit function is used to initialise cryptlib before use. Either this function or
cryptInitEx should be called before any other cryptlib function is called.

int cryptInit(void);

Parameters None

See also cryptInitEx , cryptEnd .

cryptInitEx
The cryptInitEx function is used to initialise cryptlib before use. cryptInitEx is
identical to cryptInit , but it also performs a self-test of all the encryption algorithms
provided by cryptlib. Either this function or cryptInitEx should be called before any
other cryptlib function is called.

cryptKeysetClose 195

int cryptInitEx(void);

Parameters None

Remarks This function performs exhaustive testing of all the encryption algorithms contained
in cryptlib. Since this can take some time to complete, the cryptInit function should
be used in preference to this one.

See also cryptInit , cryptEnd .

cryptKeysetClose
The cryptKeysetOpen function is used to destroy a keyset object after use. This
closes the connection to the key collection or keyset and frees up any memory it uses.

int cryptKeysetClose(const CRYPT_KEYSET keyset);

Parameters keyset
The keyset object to be destroyed.

See also cryptKeysetOpen, cryptKeysetOpenEx.

cryptKeysetOpen
The cryptKeysetOpen function is used to establish a connection to a key collection
or keyset.

int cryptKeysetOpen(CRYPT_KEYSET *keyset, const CRYPT_KEYSET_TYPE keysetType,
const char *name, CRYPT_KEYOPT options);

Parameters keyset
The address of the keyset object to be created.

keysetType
The keyset type to be used.

name
The name of the keyset.

options
Option flags to apply when opening or accessing the keyset.

See also cryptKeysetClose, cryptKeysetOpenEx.

cryptKeysetOpenEx
The cryptKeysetOpenEx function is used to establish a connection to a key
collection or keyset with the ability to specify extra connection parameters. This
functionality is required by some database servers which may require a database,
server name, user name and password, and smart card readers which may require a
reader type, card type, and communication port.

int cryptKeysetOpenEx(CRYPT_KEYSET *keyset, const CRYPT_KEYSET_TYPE keysetType,
const char *name, const char *param1, const char *param2, const char
*param3, CRYPT_KEYOPT options);

Parameters keyset
The address of the keyset object to be created.

keysetType
The keyset type to be used.

name
The name of the keyset, database, or smart card reader, or null if this parameter isn’t
required.

Function Reference196

param1
The name of the database server for database keysets, or the smart card type for
smart card keysets, or null if this parameter isn’t required.

param2
The name of the user who will be accessing the database for database keysets or the
card reader communication port for smart card keysets, or null if this parameter
isn’t required.

param3
The password for the user who will be accessing the database for database keysets,
or null if this parameter isn’t required.

options
Option flags to apply when opening or accessing the keyset.

See also cryptKeysetClose, cryptKeysetOpen.

cryptPopData
The cryptPopData function is used to remove data from an envelope container
object. Depending on the envelope type, the data will be enveloped or de-enveloped
when it is inside the envelope

int cryptPopData(const CRYPT_ENVELOPE envelope, const void *buffer, const int length, const
int *bytesCopied);

Parameters envelope
The envelope object from which to remove the data.

buffer
The address of the data to remove.

length
The length of the data to remove.

bytesCopied
The address of the number of bytes copied from the envelope.

See also cryptPushData.

cryptPushData
The cryptPushData function is used to add data to an envelope container object.
Depending on the envelope type, the data will be enveloped or de-enveloped when it
is inside the envelope

int cryptPushData(const CRYPT_ENVELOPE envelope, const void *buffer, const int length,
const int *bytesCopied);

Parameters envelope
The envelope object to which to add the data.

buffer
The address of the data to add.

length
The length of the data to add.

bytesCopied
The address of the number of bytes copied into the envelope.

See also cryptPopData.

cryptQueryCapability 197

cryptQueryCapability
The cryptQueryCapability function is used to obtain information about the
characteristics of a particular encryption algorithm. The information returned covers
the algorithm’s key size, data block size, and other algorithm-specific information.

int cryptQueryCapability(const CRYPT_ALGO cryptAlgo, CRYPT_QUERY_INFO
*cryptQueryInfo);

Parameters cryptAlgo
The encryption algorithm to be queried.

cryptQueryInfo
The address of a CRYPT_QUERY_INFO structure which is filled with the
information on the requested algorithm and mode, or null if this information isn’t
required.

Remarks Any fields in the CRYPT_QUERY_INFO structure which don’t apply to the
algorithm being queried are set to null or zero as appropriate. To determine whether
an algorithm is available (without returning information on it), set the query
information pointer to null.

See also cryptQueryDeviceCapability.

cryptQueryDeviceCapability
The cryptQueryDeviceCapability function is used to obtain information about the
characteristics of a particular encryption algorithm provided by an encryption device.
The information returned covers the algorithm’s key size, data block size, and other
algorithm-specific information.

int cryptQueryDeviceCapability(const CRYPT_DEVICE cryptDevice, const CRYPT_ALGO
cryptAlgo, CRYPT_QUERY_INFO *cryptQueryInfo);

Parameters cryptDevice
The encryption device to be queried.

cryptAlgo
The encryption algorithm to be queried.

cryptQueryInfo
The address of a CRYPT_QUERY_INFO structure which is filled with the
information on the requested algorithm and mode, or null if this information isn’t
required.

Remarks Any fields in the CRYPT_QUERY_INFO structure which don’t apply to the
algorithm being queried are set to null or zero as appropriate. To determine whether
an algorithm is available (without returning information on them), set the query
information pointer to null.

See also cryptQueryCapability .

cryptQueryObject
The cryptQueryObject function is used to obtain information about an exported key
object created with cryptExportKey , a signature object created with
cryptCreateSignature, or a key certificate or certificate request. It returns
information such as the type and algorithms used by the object.

int cryptQueryObject(const void *objectPtr, CRYPT_OBJECT_INFO cryptObjectInfo);

Parameters objectPtr
The address of a buffer which contains the object created by cryptExportKey or
cryptCreateSignature.

Function Reference198

cryptObjectInfo
The address of a CRYPT_OBJECT_INFO structure which contains information on
the exported key or signature.

Remarks Any fields in the CRYPT_OBJECT_INFO structure which don’t apply to the object
being queried are set to null or zero as appropriate.

See also cryptCheckSignature, cryptCreateSignature, cryptExportKey , cryptImportKey .

cryptSetAttribute
The cryptSetAttribute function is used to add boolean or numeric information,
command codes, and objects to a cryptlib object.

int cryptSetAttribute(const CRYPT_HANDLE cryptObject, const CRYPT_ATTRIBUTE_TYPE
attributeType, const int value);

Parameters cryptObject
The object to which to add the value.

attributeType
The attribute which is being added.

value
The boolean or numeric value, command code, or object which is being added.

See also cryptDeleteAttribute , cryptGetAttribute , cryptGetAttributeString ,
cryptSetAttributeString .

cryptSetAttributeString
The cryptSetAttributeString function is used to add attribute data to an object.

int cryptSetAttributeString(const CRYPT_HANDLE cryptObject, const
CRYPT_ATTRIBUTE_TYPE attributeType, const void *value, const int
valueLength);

Parameters cryptObject
The object to which to add the value.

attributeType
The attribute which is being added.

value
The address of the data being added.

valueLength
The length in bytes of the data being added.

See also cryptDeleteAttribute , cryptGetAttribute , cryptGetAttributeString ,
cryptSetAttribute .

cryptSignCert
The cryptSignCert function is used to digitally sign a public key certificate, CA
certificate, certification request, CRL, or other certificate-related item held in a
certificate container object.

int cryptSignCert(const CRYPT_CERTIFICATE certificate, const CRYPT_CONTEXT
signContext);

Parameters certificate
The certificate container object which contains the certificate item to sign.

cryptSignCert 199

signContext
A public-key encryption or signature context containing the private key used to sign
the certificate.

Remarks Once a certificate item has been signed, it can no longer be modified or updated using
the usual certificate manipulation functions. If you want to add further data to the
certificate item, you have to start again with a new certificate object.

See also cryptCheckCert.

Standards Conformance200

Standards Conformance
All algorithms, security methods, and data encoding systems used in cryptlib either
comply with one or more national and international banking and security standards,
or are implemented and tested to conform to a reference implementation of a
particular algorithm or security system. Compliance with national and international
security standards is automatically provided when cryptlib is integrated into an
application. The standards which cryptlib follows are listed below.

Blowfish
Blowfish has been implemented as per:

“Description of a New Varible-Length Key, 64-bit Block Cipher (Blowfish)”,
Bruce Schneier, “Fast Software Encryption”, Lecture Notes in Computer Science
No. 809, Springer-Verlag 1994.

The Blowfish modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The Blowfish code has been validated against the Blowfish reference implementation
test vectors.

CAST-128
CAST-128 has been implented as per:

RFC 2144, “The CAST-128 Encryption Algorithm”, Carlisle Adams, May 1997.

The CAST-128 modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The CAST-128 code has been validated against the RFC 2144 reference
implementation test vectors.

DES
DES has been implemented as per:

ANSI X3.92, “American National Standard, Data Encryption Algorithm”, 1981.

FIPS PUB 46-2, “Data Encryption Standard”, 1994.

FIPS PUB 74, “Guidelines for Implementing and Using the NBS Data Encryption
Standard”, 1981.

ISO/IEC 8731:1987, “Banking — Approved Algorithms for Message
Authentication — Part 1: Data Encryption Algorithm (DEA)”.

The DES modes of operation are given in:

ANSI X3.106, “American National Standard, Information Systems — Data
Encryption Algorithm — Modes of Operation”, 1983.

FIPS PUB 81, “DES Modes of Operation”, 1980.

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

cryptSignCert 201

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The DES MAC mode is given in:

ANSI X9.9, “Financial Institution Message Authentication (Wholesale)”, 1986.

FIPS PUB 113, “Computer Data Authentication”, 1984.

ISO/IEC 9797:1994, “Information technology — Security techniques — Data
integrity mechanism using a cryptographic check function employing a block
cipher algorithm”.

The DES code has been validated against the test vectors given in:

NIST Special Publication 500-20, “Validating the Correctness of Hardware
Implementations of the NBS Data Encryption Standard”.

Triple DES
Triple DES has been implemented as per:

ANSI X9.17, “American National Standard, Financial Institution Key
Management (Wholesale)”, 1985.

ANSI X9.52, “Triple Data Encryption Algorithm Modes of Operation”, 1999.

FIPS 46-3, “Data Encryption Standard (DES)”, 1999.

ISO/IEC 8732:1987, “Banking — Key Management (Wholesale)”.

The triple DES modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The DES code has been validated against the test vectors given in:

NIST Special Publication 800-20, “Modes of Operation Validation System for the
Triple Data Encryption Algorithm”.

Diffie-Hellman
DH has been implemented as per:

PKCS #3, “Diffie-Hellman Key Agreement Standard”, 1991.

ANSI X9.42, “Public Key Cryptography for the Financial Services Industry —
Agreement of Symmetric Keys Using Diffie-Hellman and MQV Algorithms”,
2000.

DSA
DSA has been implemented as per:

ANSI X9.30-1, “American National Standard, Public-Key Cryptography Using
Irreversible Algorithms for the Financial Services Industry”, 1993.

FIPS PUB 186, “Digital Signature Standard”, 1994.

Elgamal
Elgamal has been implemented as per

“A public-key cryptosystem based on discrete logarithms”, Taher Elgamal, IEEE
Transactions on Information Theory, Vol.31, No.4 (1985), p.469.

Standards Conformance202

HMAC-MD5
HMAC-MD5 has been implemented as per:

RFC 2104, “HMAC: Keyed-Hashing for Message Authentication”, Hugo
Krawczyk, Mihir Bellare, and Ran Canetti, February 1997.

The HMAC-MD5 code has been validated against the test vectors given in:

“Test Cases for HMAC-MD5 and HMAC-SHA-1”, Pau-Chen Cheng and Robert
Glenn, March 1997.

HMAC-SHA1
HMAC-SHA1 has been implemented as per:

RFC 2104, “HMAC: Keyed-Hashing for Message Authentication”, Hugo
Krawczyk, Mihir Bellare, and Ran Canetti, February 1997.

The HMAC-SHA1 code has been validated against the test vectors given in:

“Test Cases for HMAC-MD5 and HMAC-SHA-1”, Pau-Chen Cheng and Robert
Glenn, March 1997.

IDEA
IDEA has been implemented as per:

“Device for the Conversion of a Digital Block and the Use Thereof”, James
Massey and Xuejia Lai, International Patent PCT/CH91/00117, 1991.

“Device for the Conversion of a Digital Block and Use of Same”, James Massey
and Xuejia Lai, US Patent #5,214,703, 1993.

“On the Design and Security of Block Ciphers”, Xuejia Lai, ETH Series in
Information Processing, Vol.1, Hartung-Gorre Verlag, 1992.

ISO/IEC 9979, “Data Cryptographic Tecniques — Procedures for the Registration
of Cryptographic Algorithms”.

The IDEA modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The IDEA code has been validated against the ETH reference implementation test
vectors.

MD2
MD2 has been implemented as per:

RFC 1319, “The MD2 Message Digest Algorithm”, Burt Kaliski, 1992.

The MD2 code has been validated against the RFC 1319 reference implementation
test vectors.

MD4
MD4 has been implemented as per:

RFC 1320, “The MD4 Message Digest Algorithm”, Ronald Rivest, 1992.

The MD4 code has been validated against the RFC 1320 reference implementation
test vectors.

cryptSignCert 203

MD5
MD5 has been implemented as per:

RFC 1321, “The MD5 Message Digest Algorithm”, Ronald Rivest, 1992.

The MD5 code has been validated against the RFC 1321 reference implementation
test vectors.

MDC-2
MDC-2 has been implemented as per:

ISO/IEC 10118-2:1994, “Information Technology — Security Techniques —
Hash functions, Part 2: Hash functions using an n-bit block cipher algorithm”
1994.

The MDC-2 code has been validated against the reference implementation test
vectors.

RC2
The RC2 code is implemented as per:

“The RC2 Encryption Algorithm”, Ronald Rivest, RSA Data Security Inc, 1992.

RFC 2268, “A Description of the RC2 Encryption Algorithm”, Ronald Rivest,
1998.

The RC2 modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The RC2 code has been validated against RSADSI BSAFE test vectors.

RC4
The RC4 code is implemented as per:

“The RC4 Encryption Algorithm”, Ronald Rivest, RSA Data Security Inc, 1992.

The RC4 code has been validated against RSADSI BSAFE and US Department of
Commerce test vectors.

RC5
The RC5 code is implemented as per:

“The RC5 Encrypion Algorithm”, Ronald Rivest, “Fast Software Encryption II”,
Lecture Notes in Computer Science No.1008, Springer-Verlag 1995.

RFC 2040, “The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms”,
Robert Baldwin and Ronald Rivest, October 1996.

The RC5 modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The RC5 code has been validated against the RC5 reference implementation test
vectors.

Standards Conformance204

RIPEMD-160
The RIPEMD-160 code has been implemented as per:

“RIPEMD-160: A strengthened version of RIPEMD”, Hans Dobbertin, Antoon
Bosselaers, and Bart Preneel, “Fast Software Encryption III”, Lecture Notes in
Computer Science No.1008, Springer-Verlag 1995.

ISO/IEC 10118-3:1997, “Information Technology — Security Techniques —
Hash functions — Part 3: Dedicated hash functions”.

The RIPEMD-160 code has been validated against the RIPEMD-160 reference
implementation test vectors.

RSA
The RSA code is implemented as per:

ANSI X9.31-1, “American National Standard, Public-Key Cryptography Using
Reversible Algorithms for the Financial Services Industry”, 1993.

ISO IEC 9594-8/ITU-T X.509, “Information Technology — Open Systems
Interconnection — The Directory: Authentication Framework”.

PKCS #1, “RSA Encryption Standard”, 1991.

RFC 2313, “PKCS #1: RSA Encryption Version 1.5”, Burt Kaliski, 1998.

SHA/SHA1
The SHA code has been implemented as per:

ANSI X9.30-2, “American National Standard, Public-Key Cryptography Using
Irreversible Algorithms for the Financial Services Industry”, 1993.

FIPS PUB 180, “Secure Hash Standard”, 1993.

FIPS PUB 180-1, “Secure Hash Standard”, 1994.

ISO/IEC 10118-3:1997, “Information Technology — Security Techniques —
Hash functions — Part 3: Dedicated hash functions”.

The SHA code has been validated against the test vectors given in:

FIPS PUB 180, “Secure Hash Standard”, 1993.

The SHA1 code has been validated against the test vectors given in:

FIPS PUB 180-1, “Secure Hash Standard”, 1994.

Safer/Safer-SK
The Safer code has been implemented as per:

“SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm”, James L.Massey,
“Fast Software Encryption”, Lecture Notes in Computer Science No. 809,
Springer-Verlag 1994.

The Safer-SK code has been implemented as per:

“SAFER K-64: One Year Later”, James L.Massey, “Fast Software Encryption II”,
Lecture Notes in Computer Science No.1008, Springer-Verlag 1995.

The Safer/Safer-SK modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

cryptSignCert 205

The Safer/Safer-SK code has been validated against the ETH reference
implementation test vectors.

Skipjack
The Skipjack code has been implemented as per:

“Skipjack and KEA Algorithm Specifications, Version 2.0”, National Security
Agency, 28 May 1998.

“Capstone (MYK-80) Specifications”, R21 Informal Technical Report, R21-
TECH-30-95, National Security Agency, 14 August 1995.

Certificates
Certificates are implemented as per:

ISO IEC 9594-8/ITU-T X.509, “Information Technology — Open Systems
Interconnection — The Directory: Authentication Framework”.

PKCS #9, “Selected Attribute Types”, 1993.

PKCS #10, “Certification Request Syntax Standard”, 1993

RFC 2312, “S/MIME Version 2 Certificate Handling”, Dusse et al, 1998.

RFC 2314, “PKCS #10: Certification Request Syntax Version 1.5”, Burt Kaliski,
1998.

RFC 2459, “Internet X.509 Public Key Infrastructure Certificate and CRL
Profile”, Russ Housley, Warwick Ford, Tim Polk, and David Solo, January 1999.

RFC 2528, “Representation of Key Exchange Algorithm (KEA) Keys in Internet
X.509 Public Key Infrastructure Certificates”, Russ Housley and Tim Polk, March
1999.

RFC 2632, “S/MIME Version 3 Certificate Handling”, Blake Ramsdell, June
1999.

In addition to the above standards there are a large and ever-changing number of
organisational, national, and international certificate profiles. cryptlib tries to remain
compatible with the latest revisions of the various profiles, with configuration options
available to select different behaviour if there are conflicts in the standards. The
default profile is the IETF PKIX one. Further information about certification
standards is given in the chapters on certificate handling.

Data Structures
All message exchange data structures are specified and encoded as per:

ISO/IEC 8824:1993/ITU-T X.680, “Information Technology — Open Systems
Interconnection — Abstract Syntax Notation One (ASN.1)”.

ISO/IEC 8825:1993/ITU-T X.692, “Information Technology — Open Systems
Interconnection — Specification of ASN.1 Encoding Rules”.

S/MIME
The cryptographic message syntax of cryptlib data is given in:

RFC 2315, “PKCS #7: Cryptographic Message Syntax”, Burt Kaliski, 1998.

RFC 2630, “Cryptographic Message Syntax”, Russ Housley, June 1999.

RFC 2634, “Enhanced Security Services for S/MIME”, Paul Hoffman, June 1999.

The ASN.1 specifications for the message structures are given in the file
cryptlib.asn.

Standards Conformance206

Y2K Compliance
cryptlib’s date management complies with the requirements in the British Standards
Institutes Year 2000 Conformity standard:

DISC PD2000-1:1998, “A Definition of Year 2000 Conformity Requirements”,
1998.

General
The encryption subsystem has been implemented at a level equivalent to level 1 of
the standard given in:

FIPS PUB 140-1, “Security Requirements for Cryptographic Modules”, 1993.

The random-data acquisition routines follow the guidelines laid out in:

“Randomness Recommendations for Security”, RFC 1750, Donald Eastlake,
Stephen Crocker, and Jeffrey Schiller, December 1994.

“Cryptographic Random Numbers”, IEEE P1363 Appendix E, Draft version 1.0,
11 November 1995.

cryptSignCert 207

Acknowledgements
Chris Wedgwood and Paul Kendall helped write the Unix random data gathering
routines.

Cylink Corporation very generously granted permission for the use of their patents
for non-commercial purposes.

Eric Young wrote the Blowfish, CAST-128, DES, 3DES, MD5, and SHA code and
bignum library.

Jean-Loup Gailly and Mark Adler wrote the zlib compression code.

Joerg Plate did the Amiga port.

Leonard Janke wrote the 80x86 RIPEMD-160 code.

Markus F.X.J. Oberhumer did the 32-bit DOS port.

Masayasu Kumagai wrote the 80x86 IDEA code.

Matt Thomlinson and Blake Coverett helped fix up and debug the Win32 random
data gathering routines.

Matthijs van Duin did the Macintosh port.

Osma Ahvenlampi did the BeOS port.

Stuart Woolford and Mario Korva did the OS/2 port.

Wolfgang Gothier tracked down a number of really obscure
probl^H^H^H^H^Hundocumented features.

