Contents

1 Introduction

1.1 Load required packages

Load the package with the library function.

library(tidyverse)
library(ggplot2)

library(dce)

set.seed(42)
dce::df_pathway_statistics %>%
  sample_n(10) %>%
  arrange(desc(node_num)) %>%
  knitr::kable()
database pathway_id pathway_name node_num edge_num
kegg hsa:04151 PI3K-Akt signaling pathway 354 4552
kegg hsa:04371 Apelin signaling pathway 134 942
kegg hsa:04520 Adherens junction 68 170
kegg hsa:04970 Salivary secretion 48 96
kegg hsa:05321 Inflammatory bowel disease 48 81
nci pid_4166 Beta2 integrin cell surface interactions 29 140
kegg hsa:00563 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 23 116
kegg hsa:00900 Terpenoid backbone biosynthesis 21 69
biocarta pid_10459 rna polymerase iii transcription 7 42
biocarta pid_9732 estrogen responsive protein efp controls cell cycle and breast tumors growth 4 2

2 Pathway database overview

We provide access to the following topological pathway databases using graphite (Sales et al. 2012):

dce::df_pathway_statistics %>%
  count(database, sort = TRUE, name = "pathway_number") %>%
  knitr::kable()
database pathway_number
kegg 317
biocarta 247
nci 212
panther 94
pharmgkb 66
dce::df_pathway_statistics %>%
  ggplot(aes(x = node_num)) +
    geom_histogram(bins = 30) +
    facet_wrap(~ database, scales = "free") +
    theme_minimal()

3 Plotting pathways

It is easily possible to plot pathways:

pathways <- get_pathways(
  pathway_list = list(
    kegg = c("Citrate cycle (TCA cycle)")
  )
)
## 'select()' returned 1:1 mapping between keys and columns
## 'select()' returned 1:1 mapping between keys and columns
## 'select()' returned 1:1 mapping between keys and columns
## 'select()' returned 1:1 mapping between keys and columns
lapply(pathways, function(x) {
  plot_network(as(x$graph, "matrix"), visualize_edge_weights = FALSE) +
    ggtitle(x$pathway_name)
})
## [[1]]

4 Session information

sessionInfo()
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] org.Hs.eg.db_3.14.0         AnnotationDbi_1.56.0       
##  [3] dce_1.2.0                   graph_1.72.0               
##  [5] cowplot_1.1.1               forcats_0.5.1              
##  [7] stringr_1.4.0               dplyr_1.0.7                
##  [9] purrr_0.3.4                 readr_2.0.2                
## [11] tidyr_1.1.4                 tibble_3.1.5               
## [13] tidyverse_1.3.1             TCGAutils_1.14.0           
## [15] curatedTCGAData_1.15.1      MultiAssayExperiment_1.20.0
## [17] SummarizedExperiment_1.24.0 Biobase_2.54.0             
## [19] GenomicRanges_1.46.0        GenomeInfoDb_1.30.0        
## [21] IRanges_2.28.0              S4Vectors_0.32.0           
## [23] BiocGenerics_0.40.0         MatrixGenerics_1.6.0       
## [25] matrixStats_0.61.0          ggraph_2.0.5               
## [27] ggplot2_3.3.5               BiocStyle_2.22.0           
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.3                rtracklayer_1.54.0           
##   [3] prabclus_2.3-2                bit64_4.0.5                  
##   [5] knitr_1.36                    multcomp_1.4-17              
##   [7] DelayedArray_0.20.0           data.table_1.14.2            
##   [9] wesanderson_0.3.6             KEGGREST_1.34.0              
##  [11] RCurl_1.98-1.5                generics_0.1.1               
##  [13] metap_1.5                     GenomicFeatures_1.46.0       
##  [15] TH.data_1.1-0                 RSQLite_2.2.8                
##  [17] proxy_0.4-26                  CombinePValue_1.0            
##  [19] bit_4.0.4                     tzdb_0.1.2                   
##  [21] mutoss_0.1-12                 xml2_1.3.2                   
##  [23] lubridate_1.8.0               httpuv_1.6.3                 
##  [25] assertthat_0.2.1              viridis_0.6.2                
##  [27] amap_0.8-18                   xfun_0.27                    
##  [29] hms_1.1.1                     jquerylib_0.1.4              
##  [31] evaluate_0.14                 promises_1.2.0.1             
##  [33] DEoptimR_1.0-9                fansi_0.5.0                  
##  [35] restfulr_0.0.13               progress_1.2.2               
##  [37] dbplyr_2.1.1                  readxl_1.3.1                 
##  [39] Rgraphviz_2.38.0              igraph_1.2.7                 
##  [41] DBI_1.1.1                     tmvnsim_1.0-2                
##  [43] apcluster_1.4.8               RcppArmadillo_0.10.7.0.0     
##  [45] ellipsis_0.3.2                backports_1.2.1              
##  [47] bookdown_0.24                 permute_0.9-5                
##  [49] harmonicmeanp_3.0             biomaRt_2.50.0               
##  [51] vctrs_0.3.8                   abind_1.4-5                  
##  [53] Linnorm_2.18.0                cachem_1.0.6                 
##  [55] RcppEigen_0.3.3.9.1           withr_2.4.2                  
##  [57] sfsmisc_1.1-12                ggforce_0.3.3                
##  [59] robustbase_0.93-9             bdsmatrix_1.3-4              
##  [61] checkmate_2.0.0               vegan_2.5-7                  
##  [63] GenomicAlignments_1.30.0      pcalg_2.7-3                  
##  [65] prettyunits_1.1.1             mclust_5.4.7                 
##  [67] mnormt_2.0.2                  cluster_2.1.2                
##  [69] ExperimentHub_2.2.0           GenomicDataCommons_1.18.0    
##  [71] crayon_1.4.1                  ellipse_0.4.2                
##  [73] labeling_0.4.2                FMStable_0.1-2               
##  [75] edgeR_3.36.0                  pkgconfig_2.0.3              
##  [77] tweenr_1.0.2                  nlme_3.1-153                 
##  [79] ggm_2.5                       nnet_7.3-16                  
##  [81] rlang_0.4.12                  diptest_0.76-0               
##  [83] lifecycle_1.0.1               sandwich_3.0-1               
##  [85] filelock_1.0.2                BiocFileCache_2.2.0          
##  [87] mathjaxr_1.4-0                modelr_0.1.8                 
##  [89] AnnotationHub_3.2.0           cellranger_1.1.0             
##  [91] polyclip_1.10-0               Matrix_1.3-4                 
##  [93] zoo_1.8-9                     reprex_2.0.1                 
##  [95] png_0.1-7                     viridisLite_0.4.0            
##  [97] rjson_0.2.20                  bitops_1.0-7                 
##  [99] Biostrings_2.62.0             blob_1.2.2                   
## [101] scales_1.1.1                  plyr_1.8.6                   
## [103] memoise_2.0.0                 graphite_1.40.0              
## [105] magrittr_2.0.1                gdata_2.18.0                 
## [107] zlibbioc_1.40.0               compiler_4.1.1               
## [109] BiocIO_1.4.0                  clue_0.3-60                  
## [111] plotrix_3.8-2                 Rsamtools_2.10.0             
## [113] cli_3.0.1                     XVector_0.34.0               
## [115] MASS_7.3-54                   mgcv_1.8-38                  
## [117] tidyselect_1.1.1              stringi_1.7.5                
## [119] highr_0.9                     yaml_2.2.1                   
## [121] locfit_1.5-9.4                ggrepel_0.9.1                
## [123] grid_4.1.1                    sass_0.4.0                   
## [125] tools_4.1.1                   parallel_4.1.1               
## [127] rstudioapi_0.13               snowfall_1.84-6.1            
## [129] gridExtra_2.3                 farver_2.1.0                 
## [131] Rtsne_0.15                    digest_0.6.28                
## [133] BiocManager_1.30.16           flexclust_1.4-0              
## [135] shiny_1.7.1                   mnem_1.10.0                  
## [137] fpc_2.2-9                     ppcor_1.1                    
## [139] Rcpp_1.0.7                    broom_0.7.9                  
## [141] BiocVersion_3.14.0            later_1.3.0                  
## [143] httr_1.4.2                    ggdendro_0.1.22              
## [145] kernlab_0.9-29                naturalsort_0.1.3            
## [147] Rdpack_2.1.2                  colorspace_2.0-2             
## [149] rvest_1.0.2                   XML_3.99-0.8                 
## [151] fs_1.5.0                      splines_4.1.1                
## [153] RBGL_1.70.0                   statmod_1.4.36               
## [155] sn_2.0.0                      expm_0.999-6                 
## [157] graphlayouts_0.7.1            multtest_2.50.0              
## [159] flexmix_2.3-17                xtable_1.8-4                 
## [161] jsonlite_1.7.2                tidygraph_1.2.0              
## [163] corpcor_1.6.10                modeltools_0.2-23            
## [165] R6_2.5.1                      gmodels_2.18.1               
## [167] TFisher_0.2.0                 pillar_1.6.4                 
## [169] htmltools_0.5.2               mime_0.12                    
## [171] glue_1.4.2                    fastmap_1.1.0                
## [173] BiocParallel_1.28.0           class_7.3-19                 
## [175] interactiveDisplayBase_1.32.0 codetools_0.2-18             
## [177] tsne_0.1-3                    mvtnorm_1.1-3                
## [179] utf8_1.2.2                    lattice_0.20-45              
## [181] bslib_0.3.1                   logger_0.2.2                 
## [183] numDeriv_2016.8-1.1           curl_4.3.2                   
## [185] gtools_3.9.2                  magick_2.7.3                 
## [187] survival_3.2-13               limma_3.50.0                 
## [189] rmarkdown_2.11                fastICA_1.2-3                
## [191] munsell_0.5.0                 e1071_1.7-9                  
## [193] fastcluster_1.2.3             GenomeInfoDbData_1.2.7       
## [195] reshape2_1.4.4                haven_2.4.3                  
## [197] gtable_0.3.0                  rbibutils_2.2.4

References

Sales, Gabriele, Enrica Calura, Duccio Cavalieri, and Chiara Romualdi. 2012. “Graphite-a Bioconductor Package to Convert Pathway Topology to Gene Network.” BMC Bioinformatics 13 (1): 20.