Load the package with the library function.
library(tidyverse)
library(ggplot2)
library(dce)
set.seed(42)
dce::df_pathway_statistics %>%
sample_n(10) %>%
arrange(desc(node_num)) %>%
knitr::kable()
database | pathway_id | pathway_name | node_num | edge_num |
---|---|---|---|---|
kegg | hsa:04151 | PI3K-Akt signaling pathway | 354 | 4552 |
kegg | hsa:04371 | Apelin signaling pathway | 134 | 942 |
kegg | hsa:04520 | Adherens junction | 68 | 170 |
kegg | hsa:04970 | Salivary secretion | 48 | 96 |
kegg | hsa:05321 | Inflammatory bowel disease | 48 | 81 |
nci | pid_4166 | Beta2 integrin cell surface interactions | 29 | 140 |
kegg | hsa:00563 | Glycosylphosphatidylinositol (GPI)-anchor biosynthesis | 23 | 116 |
kegg | hsa:00900 | Terpenoid backbone biosynthesis | 21 | 69 |
biocarta | pid_10459 | rna polymerase iii transcription | 7 | 42 |
biocarta | pid_9732 | estrogen responsive protein efp controls cell cycle and breast tumors growth | 4 | 2 |
We provide access to the following topological pathway databases using graphite (Sales et al. 2012):
dce::df_pathway_statistics %>%
count(database, sort = TRUE, name = "pathway_number") %>%
knitr::kable()
database | pathway_number |
---|---|
kegg | 317 |
biocarta | 247 |
nci | 212 |
panther | 94 |
pharmgkb | 66 |
dce::df_pathway_statistics %>%
ggplot(aes(x = node_num)) +
geom_histogram(bins = 30) +
facet_wrap(~ database, scales = "free") +
theme_minimal()
It is easily possible to plot pathways:
pathways <- get_pathways(
pathway_list = list(
kegg = c("Citrate cycle (TCA cycle)")
)
)
## 'select()' returned 1:1 mapping between keys and columns
## 'select()' returned 1:1 mapping between keys and columns
## 'select()' returned 1:1 mapping between keys and columns
## 'select()' returned 1:1 mapping between keys and columns
lapply(pathways, function(x) {
plot_network(as(x$graph, "matrix"), visualize_edge_weights = FALSE) +
ggtitle(x$pathway_name)
})
## [[1]]
sessionInfo()
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] org.Hs.eg.db_3.14.0 AnnotationDbi_1.56.0
## [3] dce_1.2.0 graph_1.72.0
## [5] cowplot_1.1.1 forcats_0.5.1
## [7] stringr_1.4.0 dplyr_1.0.7
## [9] purrr_0.3.4 readr_2.0.2
## [11] tidyr_1.1.4 tibble_3.1.5
## [13] tidyverse_1.3.1 TCGAutils_1.14.0
## [15] curatedTCGAData_1.15.1 MultiAssayExperiment_1.20.0
## [17] SummarizedExperiment_1.24.0 Biobase_2.54.0
## [19] GenomicRanges_1.46.0 GenomeInfoDb_1.30.0
## [21] IRanges_2.28.0 S4Vectors_0.32.0
## [23] BiocGenerics_0.40.0 MatrixGenerics_1.6.0
## [25] matrixStats_0.61.0 ggraph_2.0.5
## [27] ggplot2_3.3.5 BiocStyle_2.22.0
##
## loaded via a namespace (and not attached):
## [1] rappdirs_0.3.3 rtracklayer_1.54.0
## [3] prabclus_2.3-2 bit64_4.0.5
## [5] knitr_1.36 multcomp_1.4-17
## [7] DelayedArray_0.20.0 data.table_1.14.2
## [9] wesanderson_0.3.6 KEGGREST_1.34.0
## [11] RCurl_1.98-1.5 generics_0.1.1
## [13] metap_1.5 GenomicFeatures_1.46.0
## [15] TH.data_1.1-0 RSQLite_2.2.8
## [17] proxy_0.4-26 CombinePValue_1.0
## [19] bit_4.0.4 tzdb_0.1.2
## [21] mutoss_0.1-12 xml2_1.3.2
## [23] lubridate_1.8.0 httpuv_1.6.3
## [25] assertthat_0.2.1 viridis_0.6.2
## [27] amap_0.8-18 xfun_0.27
## [29] hms_1.1.1 jquerylib_0.1.4
## [31] evaluate_0.14 promises_1.2.0.1
## [33] DEoptimR_1.0-9 fansi_0.5.0
## [35] restfulr_0.0.13 progress_1.2.2
## [37] dbplyr_2.1.1 readxl_1.3.1
## [39] Rgraphviz_2.38.0 igraph_1.2.7
## [41] DBI_1.1.1 tmvnsim_1.0-2
## [43] apcluster_1.4.8 RcppArmadillo_0.10.7.0.0
## [45] ellipsis_0.3.2 backports_1.2.1
## [47] bookdown_0.24 permute_0.9-5
## [49] harmonicmeanp_3.0 biomaRt_2.50.0
## [51] vctrs_0.3.8 abind_1.4-5
## [53] Linnorm_2.18.0 cachem_1.0.6
## [55] RcppEigen_0.3.3.9.1 withr_2.4.2
## [57] sfsmisc_1.1-12 ggforce_0.3.3
## [59] robustbase_0.93-9 bdsmatrix_1.3-4
## [61] checkmate_2.0.0 vegan_2.5-7
## [63] GenomicAlignments_1.30.0 pcalg_2.7-3
## [65] prettyunits_1.1.1 mclust_5.4.7
## [67] mnormt_2.0.2 cluster_2.1.2
## [69] ExperimentHub_2.2.0 GenomicDataCommons_1.18.0
## [71] crayon_1.4.1 ellipse_0.4.2
## [73] labeling_0.4.2 FMStable_0.1-2
## [75] edgeR_3.36.0 pkgconfig_2.0.3
## [77] tweenr_1.0.2 nlme_3.1-153
## [79] ggm_2.5 nnet_7.3-16
## [81] rlang_0.4.12 diptest_0.76-0
## [83] lifecycle_1.0.1 sandwich_3.0-1
## [85] filelock_1.0.2 BiocFileCache_2.2.0
## [87] mathjaxr_1.4-0 modelr_0.1.8
## [89] AnnotationHub_3.2.0 cellranger_1.1.0
## [91] polyclip_1.10-0 Matrix_1.3-4
## [93] zoo_1.8-9 reprex_2.0.1
## [95] png_0.1-7 viridisLite_0.4.0
## [97] rjson_0.2.20 bitops_1.0-7
## [99] Biostrings_2.62.0 blob_1.2.2
## [101] scales_1.1.1 plyr_1.8.6
## [103] memoise_2.0.0 graphite_1.40.0
## [105] magrittr_2.0.1 gdata_2.18.0
## [107] zlibbioc_1.40.0 compiler_4.1.1
## [109] BiocIO_1.4.0 clue_0.3-60
## [111] plotrix_3.8-2 Rsamtools_2.10.0
## [113] cli_3.0.1 XVector_0.34.0
## [115] MASS_7.3-54 mgcv_1.8-38
## [117] tidyselect_1.1.1 stringi_1.7.5
## [119] highr_0.9 yaml_2.2.1
## [121] locfit_1.5-9.4 ggrepel_0.9.1
## [123] grid_4.1.1 sass_0.4.0
## [125] tools_4.1.1 parallel_4.1.1
## [127] rstudioapi_0.13 snowfall_1.84-6.1
## [129] gridExtra_2.3 farver_2.1.0
## [131] Rtsne_0.15 digest_0.6.28
## [133] BiocManager_1.30.16 flexclust_1.4-0
## [135] shiny_1.7.1 mnem_1.10.0
## [137] fpc_2.2-9 ppcor_1.1
## [139] Rcpp_1.0.7 broom_0.7.9
## [141] BiocVersion_3.14.0 later_1.3.0
## [143] httr_1.4.2 ggdendro_0.1.22
## [145] kernlab_0.9-29 naturalsort_0.1.3
## [147] Rdpack_2.1.2 colorspace_2.0-2
## [149] rvest_1.0.2 XML_3.99-0.8
## [151] fs_1.5.0 splines_4.1.1
## [153] RBGL_1.70.0 statmod_1.4.36
## [155] sn_2.0.0 expm_0.999-6
## [157] graphlayouts_0.7.1 multtest_2.50.0
## [159] flexmix_2.3-17 xtable_1.8-4
## [161] jsonlite_1.7.2 tidygraph_1.2.0
## [163] corpcor_1.6.10 modeltools_0.2-23
## [165] R6_2.5.1 gmodels_2.18.1
## [167] TFisher_0.2.0 pillar_1.6.4
## [169] htmltools_0.5.2 mime_0.12
## [171] glue_1.4.2 fastmap_1.1.0
## [173] BiocParallel_1.28.0 class_7.3-19
## [175] interactiveDisplayBase_1.32.0 codetools_0.2-18
## [177] tsne_0.1-3 mvtnorm_1.1-3
## [179] utf8_1.2.2 lattice_0.20-45
## [181] bslib_0.3.1 logger_0.2.2
## [183] numDeriv_2016.8-1.1 curl_4.3.2
## [185] gtools_3.9.2 magick_2.7.3
## [187] survival_3.2-13 limma_3.50.0
## [189] rmarkdown_2.11 fastICA_1.2-3
## [191] munsell_0.5.0 e1071_1.7-9
## [193] fastcluster_1.2.3 GenomeInfoDbData_1.2.7
## [195] reshape2_1.4.4 haven_2.4.3
## [197] gtable_0.3.0 rbibutils_2.2.4
Sales, Gabriele, Enrica Calura, Duccio Cavalieri, and Chiara Romualdi. 2012. “Graphite-a Bioconductor Package to Convert Pathway Topology to Gene Network.” BMC Bioinformatics 13 (1): 20.