snifter 1.4.0
snifter provides an R wrapper for the openTSNE implementation of fast interpolated t-SNE (FI-tSNE). It is based on basilisk and reticulate. This vignette aims to provide a brief overview of typical use when applied to scRNAseq data, but it does not provide a comprehensive guide to the available options in the package.
It is highly advisable to review the documentation in snifter and the openTSNE documentation to gain a full understanding of the available options.
We will illustrate the use of snifter using data from scRNAseq and single cell utility functions provided by scuttle, scater and scran - first we load these libraries and set a random seed to ensure the t-SNE visualisation is reproducible (note: it is good practice to ensure that a t-SNE embedding is robust by running the algorithm multiple times).
library("snifter")
library("scRNAseq")
library("scran")
library("scuttle")
library("scater")
library("ggplot2")
theme_set(theme_bw())
set.seed(42)
Before running t-SNE, we first load data generated by Zeisel et al. from scRNAseq. We filter this data to remove genes expressed only in a small number of cells, estimate normalisation factors using scran and generate 20 principal components. We will use these principal components to generate the t-SNE embedding later.
data <- ZeiselBrainData()
data <- data[rowMeans(counts(data) != 0) > 0.05, ]
data <- computeSumFactors(data, cluster = quickCluster(data))
data <- logNormCounts(data)
data <- runPCA(data, ncomponents = 20)
## Convert this to a factor to use as colouring variable later
data$level1class <- factor(data$level1class)
The main functionality of the package lies in the fitsne
function. This function returns a matrix of t-SNE co-ordinates. In this case,
we pass in the 20 principal components computed based on the
log-normalised counts. We colour points based on the discrete
cell types identified by the authors.
mat <- reducedDim(data)
fit <- fitsne(mat, random_state = 42L)
ggplot() +
aes(fit[, 1], fit[, 2], colour = data$level1class) +
geom_point(pch = 19) +
scale_colour_discrete(name = "Cell type") +
labs(x = "t-SNE 1", y = "t-SNE 2")
The openTNSE package, and by extension snifter, also allows the embedding of new data into an existing t-SNE embedding. Here, we will split the data into “training” and “test” sets. Following this, we generate a t-SNE embedding using the training data, and project the test data into this embedding.
test_ind <- sample(nrow(mat), nrow(mat) / 2)
train_ind <- setdiff(seq_len(nrow(mat)), test_ind)
train_mat <- mat[train_ind, ]
test_mat <- mat[test_ind, ]
train_label <- data$level1class[train_ind]
test_label <- data$level1class[test_ind]
embedding <- fitsne(train_mat, random_state = 42L)
Once we have generated the embedding, we can now project
the unseen test
data into this t-SNE embedding.
new_coords <- project(embedding, new = test_mat, old = train_mat)
ggplot() +
geom_point(
aes(embedding[, 1], embedding[, 2],
colour = train_label,
shape = "Train"
)
) +
geom_point(
aes(new_coords[, 1], new_coords[, 2],
colour = test_label,
shape = "Test"
)
) +
scale_colour_discrete(name = "Cell type") +
scale_shape_discrete(name = NULL) +
labs(x = "t-SNE 1", y = "t-SNE 2")
sessionInfo()
#> R version 4.1.1 (2021-08-10)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] scater_1.22.0 ggplot2_3.3.5
#> [3] scran_1.22.0 scuttle_1.4.0
#> [5] scRNAseq_2.7.2 SingleCellExperiment_1.16.0
#> [7] SummarizedExperiment_1.24.0 Biobase_2.54.0
#> [9] GenomicRanges_1.46.0 GenomeInfoDb_1.30.0
#> [11] IRanges_2.28.0 S4Vectors_0.32.0
#> [13] BiocGenerics_0.40.0 MatrixGenerics_1.6.0
#> [15] matrixStats_0.61.0 snifter_1.4.0
#> [17] BiocStyle_2.22.0
#>
#> loaded via a namespace (and not attached):
#> [1] AnnotationHub_3.2.0 BiocFileCache_2.2.0
#> [3] igraph_1.2.7 lazyeval_0.2.2
#> [5] BiocParallel_1.28.0 digest_0.6.28
#> [7] ensembldb_2.18.0 htmltools_0.5.2
#> [9] magick_2.7.3 viridis_0.6.2
#> [11] fansi_0.5.0 magrittr_2.0.1
#> [13] memoise_2.0.0 ScaledMatrix_1.2.0
#> [15] cluster_2.1.2 limma_3.50.0
#> [17] Biostrings_2.62.0 prettyunits_1.1.1
#> [19] colorspace_2.0-2 ggrepel_0.9.1
#> [21] blob_1.2.2 rappdirs_0.3.3
#> [23] xfun_0.27 dplyr_1.0.7
#> [25] crayon_1.4.1 RCurl_1.98-1.5
#> [27] jsonlite_1.7.2 glue_1.4.2
#> [29] gtable_0.3.0 zlibbioc_1.40.0
#> [31] XVector_0.34.0 DelayedArray_0.20.0
#> [33] BiocSingular_1.10.0 scales_1.1.1
#> [35] DBI_1.1.1 edgeR_3.36.0
#> [37] Rcpp_1.0.7 viridisLite_0.4.0
#> [39] xtable_1.8-4 progress_1.2.2
#> [41] reticulate_1.22 dqrng_0.3.0
#> [43] bit_4.0.4 rsvd_1.0.5
#> [45] metapod_1.2.0 httr_1.4.2
#> [47] dir.expiry_1.2.0 ellipsis_0.3.2
#> [49] farver_2.1.0 pkgconfig_2.0.3
#> [51] XML_3.99-0.8 sass_0.4.0
#> [53] dbplyr_2.1.1 here_1.0.1
#> [55] locfit_1.5-9.4 utf8_1.2.2
#> [57] labeling_0.4.2 tidyselect_1.1.1
#> [59] rlang_0.4.12 later_1.3.0
#> [61] AnnotationDbi_1.56.0 munsell_0.5.0
#> [63] BiocVersion_3.14.0 tools_4.1.1
#> [65] cachem_1.0.6 generics_0.1.1
#> [67] RSQLite_2.2.8 ExperimentHub_2.2.0
#> [69] evaluate_0.14 stringr_1.4.0
#> [71] fastmap_1.1.0 yaml_2.2.1
#> [73] knitr_1.36 bit64_4.0.5
#> [75] purrr_0.3.4 KEGGREST_1.34.0
#> [77] AnnotationFilter_1.18.0 sparseMatrixStats_1.6.0
#> [79] mime_0.12 xml2_1.3.2
#> [81] biomaRt_2.50.0 compiler_4.1.1
#> [83] beeswarm_0.4.0 filelock_1.0.2
#> [85] curl_4.3.2 png_0.1-7
#> [87] interactiveDisplayBase_1.32.0 tibble_3.1.5
#> [89] statmod_1.4.36 bslib_0.3.1
#> [91] stringi_1.7.5 highr_0.9
#> [93] basilisk.utils_1.6.0 GenomicFeatures_1.46.0
#> [95] lattice_0.20-45 bluster_1.4.0
#> [97] ProtGenerics_1.26.0 Matrix_1.3-4
#> [99] vctrs_0.3.8 pillar_1.6.4
#> [101] lifecycle_1.0.1 BiocManager_1.30.16
#> [103] jquerylib_0.1.4 BiocNeighbors_1.12.0
#> [105] bitops_1.0-7 irlba_2.3.3
#> [107] httpuv_1.6.3 rtracklayer_1.54.0
#> [109] R6_2.5.1 BiocIO_1.4.0
#> [111] bookdown_0.24 promises_1.2.0.1
#> [113] gridExtra_2.3 vipor_0.4.5
#> [115] assertthat_0.2.1 rprojroot_2.0.2
#> [117] rjson_0.2.20 withr_2.4.2
#> [119] GenomicAlignments_1.30.0 Rsamtools_2.10.0
#> [121] GenomeInfoDbData_1.2.7 parallel_4.1.1
#> [123] hms_1.1.1 grid_4.1.1
#> [125] beachmat_2.10.0 basilisk_1.6.0
#> [127] rmarkdown_2.11 DelayedMatrixStats_1.16.0
#> [129] shiny_1.7.1 ggbeeswarm_0.6.0
#> [131] restfulr_0.0.13