Original version: 31 October, 2023
This vignette illustrates how to display AlphaMissense predictions on AlphaFold predicted protein structure.
Visualization makes use of CRAN packages bio3d and r3dmol. Install these (if necessary) with
pkgs <- c("bio3d", "r3dmol")
pkgs_to_install <- pkgs[!pkgs %in% rownames(installed.packages())]
if (length(pkgs_to_install))
BiocManager::install(pkgs_to_install)
Start by loading the AlphaMissenseR library.
Visit the summary of available AlphaMissense datasets
am_available()
#> # A tibble: 7 × 6
#> record key size cached filename link
#> <chr> <chr> <dbl> <lgl> <chr> <chr>
#> 1 10813168 gene_hg38 253636 TRUE AlphaMissense_gene… http…
#> 2 10813168 isoforms_hg38 1177361934 FALSE AlphaMissense_isof… http…
#> 3 10813168 isoforms_aa_substitutions 2461351945 FALSE AlphaMissense_isof… http…
#> 4 10813168 hg38 642961469 TRUE AlphaMissense_hg38… http…
#> 5 10813168 hg19 622293310 FALSE AlphaMissense_hg19… http…
#> 6 10813168 gene_hg19 243943 FALSE AlphaMissense_gene… http…
#> 7 10813168 aa_substitutions 1207278510 TRUE AlphaMissense_aa_s… http…
This vignette uses the aa_substitutions
and hg38
data resources; make sure that these have been cached locally.
am_data("aa_substitutions")
#> # Source: table<aa_substitutions> [?? x 4]
#> # Database: DuckDB v1.1.2 [biocbuild@Linux 6.8.0-47-generic:R 4.4.1//media/volume/teran2_disk/biocbuild/.cache/R/BiocFileCache/37a63916299483_37a63916299483]
#> uniprot_id protein_variant am_pathogenicity am_class
#> <chr> <chr> <dbl> <chr>
#> 1 A0A024R1R8 M1A 0.467 ambiguous
#> 2 A0A024R1R8 M1C 0.383 ambiguous
#> 3 A0A024R1R8 M1D 0.827 pathogenic
#> 4 A0A024R1R8 M1E 0.524 ambiguous
#> 5 A0A024R1R8 M1F 0.275 benign
#> 6 A0A024R1R8 M1G 0.548 ambiguous
#> 7 A0A024R1R8 M1H 0.552 ambiguous
#> 8 A0A024R1R8 M1I 0.321 benign
#> 9 A0A024R1R8 M1K 0.288 benign
#> 10 A0A024R1R8 M1L 0.175 benign
#> # ℹ more rows
am_data("hg38")
#> # Source: table<hg38> [?? x 10]
#> # Database: DuckDB v1.1.2 [biocbuild@Linux 6.8.0-47-generic:R 4.4.1//media/volume/teran2_disk/biocbuild/.cache/R/BiocFileCache/37a63916299483_37a63916299483]
#> CHROM POS REF ALT genome uniprot_id transcript_id protein_variant
#> <chr> <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 chr1 69094 G T hg38 Q8NH21 ENST00000335137.4 V2L
#> 2 chr1 69094 G C hg38 Q8NH21 ENST00000335137.4 V2L
#> 3 chr1 69094 G A hg38 Q8NH21 ENST00000335137.4 V2M
#> 4 chr1 69095 T C hg38 Q8NH21 ENST00000335137.4 V2A
#> 5 chr1 69095 T A hg38 Q8NH21 ENST00000335137.4 V2E
#> 6 chr1 69095 T G hg38 Q8NH21 ENST00000335137.4 V2G
#> 7 chr1 69097 A G hg38 Q8NH21 ENST00000335137.4 T3A
#> 8 chr1 69097 A C hg38 Q8NH21 ENST00000335137.4 T3P
#> 9 chr1 69097 A T hg38 Q8NH21 ENST00000335137.4 T3S
#> 10 chr1 69098 C A hg38 Q8NH21 ENST00000335137.4 T3N
#> # ℹ more rows
#> # ℹ 2 more variables: am_pathogenicity <dbl>, am_class <chr>
AlphaMissense predictions on pathogenicity of amino acid changes can be combined with AlphaFold (or other) predictions of protein structure.
Figure 3F of the AlphaMissense publication visualizes mean pathogenicity for UniProt id P35557. Filter amino acid data for that identifier
and visualization median pathogenicity with
The image is interactive, including rotation and zoom. The following sections explore this visualization in more detail.
Both AlphaMissense and AlphaFold use UniProt identifiers. Find all AlphaMissense amino acid substitutions with UniProt identifiers starting with P3555
; the choice of this identifier is so that results can be compared with Figure 3F of the AlphaMissense publication.
uniprot_ids <-
am_data("aa_substitutions") |>
dplyr::filter(uniprot_id %like% "P3555%") |>
dplyr::distinct(uniprot_id) |>
pull(uniprot_id)
uniprot_ids
#> [1] "P35558" "P35556" "P35557" "P35555"
The AlphaMissenseR package includes several functions that facilitate interaction with AlphaFold; these functions start with af_*()
. Use af_predictions()
to discover AlphaFold predictions (via the AlphaFold API) associated with UniProt identifiers.
prediction <- af_predictions(uniprot_ids)
#> * [17:35:02][info] 2 of 4 uniprot accessions not found
#> 'P35556', 'P35555'
glimpse(prediction)
#> Rows: 2
#> Columns: 25
#> $ entryId <chr> "AF-P35558-F1", "AF-P35557-F1"
#> $ gene <chr> "PCK1", "GCK"
#> $ sequenceChecksum <chr> "78D309E0845CC181", "094D4A2F78096724"
#> $ sequenceVersionDate <chr> "2006-03-07", "1994-06-01"
#> $ uniprotAccession <chr> "P35558", "P35557"
#> $ uniprotId <chr> "PCKGC_HUMAN", "HXK4_HUMAN"
#> $ uniprotDescription <chr> "Phosphoenolpyruvate carboxykinase, cytosolic […
#> $ taxId <int> 9606, 9606
#> $ organismScientificName <chr> "Homo sapiens", "Homo sapiens"
#> $ uniprotStart <int> 1, 1
#> $ uniprotEnd <int> 622, 465
#> $ uniprotSequence <chr> "MPPQLQNGLNLSAKVVQGSLDSLPQAVREFLENNAELCQPDHIHIC…
#> $ modelCreatedDate <chr> "2022-06-01", "2022-06-01"
#> $ latestVersion <int> 4, 4
#> $ allVersions <list> [1, 2, 3, 4], [1, 2, 3, 4]
#> $ isReviewed <lgl> TRUE, TRUE
#> $ isReferenceProteome <lgl> TRUE, TRUE
#> $ cifUrl <chr> "https://alphafold.ebi.ac.uk/files/AF-P35558-F1…
#> $ bcifUrl <chr> "https://alphafold.ebi.ac.uk/files/AF-P35558-F1…
#> $ pdbUrl <chr> "https://alphafold.ebi.ac.uk/files/AF-P35558-F1…
#> $ paeImageUrl <chr> "https://alphafold.ebi.ac.uk/files/AF-P35558-F1…
#> $ paeDocUrl <chr> "https://alphafold.ebi.ac.uk/files/AF-P35558-F1…
#> $ amAnnotationsUrl <chr> "https://alphafold.ebi.ac.uk/files/AF-P35558-F1…
#> $ amAnnotationsHg19Url <chr> "https://alphafold.ebi.ac.uk/files/AF-P35558-F1…
#> $ amAnnotationsHg38Url <chr> "https://alphafold.ebi.ac.uk/files/AF-P35558-F1…
Note the message indicating that some UniProt identifiers (accessions) are not found in the AlphaFold database. The query returns a tibble containing columns with information on organism and UniProt characteristics (including protein sequence) , as well as URLs for files representing three-dimensional protein structure. We will use pdbUrl
.
Focus on a particular UniProt identifier and the PDB url.
Cache the PDB file using BiocFileCache, and read the PDB file using bio3d.
pdb_file <- BiocFileCache::bfcrpath(rnames = basename(pdb_url), fpath = pdb_url)
pdb <- bio3d::read.pdb(pdb_file)
pdb
#>
#> Call: bio3d::read.pdb(file = pdb_file)
#>
#> Total Models#: 1
#> Total Atoms#: 3642, XYZs#: 10926 Chains#: 1 (values: A)
#>
#> Protein Atoms#: 3642 (residues/Calpha atoms#: 465)
#> Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
#>
#> Non-protein/nucleic Atoms#: 0 (residues: 0)
#> Non-protein/nucleic resid values: [ none ]
#>
#> Protein sequence:
#> MLDDRARMEAAKKEKVEQILAEFQLQEEDLKKVMRRMQKEMDRGLRLETHEEASVKMLPT
#> YVRSTPEGSEVGDFLSLDLGGTNFRVMLVKVGEGEEGQWSVKTKHQMYSIPEDAMTGTAE
#> MLFDYISECISDFLDKHQMKHKKLPLGFTFSFPVRHEDIDKGILLNWTKGFKASGAEGNN
#> VVGLLRDAIKRRGDFEMDVVAMVNDTVATMISCYYEDHQCEVGMI...<cut>...MLGQ
#>
#> + attr: atom, xyz, seqres, calpha, call
Visualize the protein using r3dmol, using the ‘cartoon’ style.
Our goal is to visualize some measure of ‘average’ pathogenicity on the three-dimensional protein structure provided by AlphaFold. Start with a specific genome sequence (e.g., hg38
). Filter to the amino acids in our UniProt region of interest.
At each chromosome position, the AlphaMissense predictions contain several alternative alleles and hence protein variants. The (arithmetic) average pathogenicity (this is an extremely naive computation) at each amino acid position is
pathogenicity <- am_aa_pathogenicity(P35557)
pathogenicity
#> # A tibble: 464 × 9
#> uniprot_id aa_pos aa_ref aa_pathogenicity_n aa_pathogenicity_mean
#> <chr> <int> <chr> <int> <dbl>
#> 1 P35557 2 L 5 0.0818
#> 2 P35557 3 D 8 0.184
#> 3 P35557 4 D 8 0.147
#> 4 P35557 5 R 6 0.250
#> 5 P35557 6 A 6 0.138
#> 6 P35557 7 R 7 0.257
#> 7 P35557 8 M 9 0.142
#> 8 P35557 9 E 7 0.212
#> 9 P35557 10 A 6 0.142
#> 10 P35557 11 A 6 0.142
#> # ℹ 454 more rows
#> # ℹ 4 more variables: aa_pathogenicity_median <dbl>,
#> # aa_pathogenicity_min <dbl>, aa_pathogenicity_max <dbl>,
#> # aa_pathogenicity_mode <fct>
Individual amino acids can be colored using the colorfunc=
argument to r3dmol::m_style_cartoon()
. This is a Javascript function that takes each atom position and returns the corresponding color. The approach taken in AlphaMissenseR is to use a template, ultimately replacing ...
with a vector of residue colors.
cat(
AlphaMissenseR:::js_template("colorfunc", colors = "..."),
"\n"
)
#> function(atom) {
#> const residue_colors = [ ... ];
#> return residue_colors[atom.resi];
#> }
The function af_colorfunc_by_position()
provides a mechanism for translating a vector of scores between zero and one into a vector of colors. This is illustrated for a 12-amino acid sequence where the first and last residues are uncolored.
df <- tibble(
pos = 1 + 1:10, # no color information for position 1
value = 10:1 / 10
)
colorfunc <- af_colorfunc_by_position(
df,
"pos", "value",
pos_max = 12 # no color information for position 12
)
cat(colorfunc, "\n")
#> function(atom) {
#> const residue_colors = [ 'gray', '#8E063B', '#AB5468', '#C18692', '#D2B0B6', '#DDD0D2', '#D2D3DC', '#B3B7CF', '#8C94BF', '#5D6CAE', '#023FA5', 'gray' ];
#> return residue_colors[atom.resi];
#> }
The following color function is similar to that used in af_prediction_view()
, but uses the mean rather than median pathogenicity and scales the palette between the minimum and maximum values of the mean pathogenicity vector, rather than between 0 and 1.
colorfunc <-
pathogenicity |>
af_colorfunc_by_position(
"aa_pos", "aa_pathogenicity_mean",
length(pdb$seqres)
)
Add this as the colorfunc=
argument to m_style_cartoon()
for visualization.
r3dmol::r3dmol() |>
## use the PDB representation
r3dmol::m_add_model(r3dmol::m_bio3d(pdb)) |>
## visualize as a 'cartoon' with alpha helices and beta sheets
r3dmol::m_set_style(
style = r3dmol::m_style_cartoon(
arrow = TRUE,
## color residue according to colorfunc
colorfunc = colorfunc
)
) |>
## fit molecule into display area
r3dmol::m_zoom_to()
The variant effect prediction data can also be visualized in a genome browser view. This allows the user to explore the predicted pathogenicity of single nucleotide missense mutations in a gene of interest. This multi-scale visualization is based on Gosling, a grammar-based toolkit for scalable and interactive genomics data visualization.
For demonstration, we create a GPos
object for a protein of interest.
The function plot_granges
invokes functionality from the shiny.gosling package to produce an interactive genome track plot in which the pathogenicity score for each point mutation in a linear genomic track.
The resulting plot is a Shiny app that can be displayed when running the following command in an interactive R session.
Alternatively, a multiscale-lollipop plot can be generated with the same function by changing the plot_type
argument to highlight the predicted class outcomes for each mutation (ambigious, benign, pathogenic).
gosling_plot(
gpos, plot_type = "lollipop",
title = "Q1W6H9 track",
subtitle = "lollipop plot example"
)
Remember to disconnect and shutdown all managed DuckDB connections.
Database connections that are not closed correctly trigger warning messages.
sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /media/volume/teran2_disk/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] AlphaMissenseR_1.2.0 dplyr_1.1.4
#>
#> loaded via a namespace (and not attached):
#> [1] gtable_0.3.6 xfun_0.48 bslib_0.8.0
#> [4] ggplot2_3.5.1 htmlwidgets_1.6.4 rjsoncons_1.3.1
#> [7] vctrs_0.6.5 tools_4.4.1 generics_0.1.3
#> [10] stats4_4.4.1 curl_5.2.3 parallel_4.4.1
#> [13] tibble_3.2.1 fansi_1.0.6 RSQLite_2.3.7
#> [16] blob_1.2.4 shiny.gosling_1.2.0 pkgconfig_2.0.3
#> [19] BiocBaseUtils_1.8.0 dbplyr_2.5.0 S4Vectors_0.44.0
#> [22] RcppSpdlog_0.0.18 GenomeInfoDbData_1.2.13 lifecycle_1.0.4
#> [25] compiler_4.4.1 munsell_0.5.1 GenomeInfoDb_1.42.0
#> [28] httpuv_1.6.15 htmltools_0.5.8.1 sass_0.4.9
#> [31] yaml_2.3.10 pillar_1.9.0 later_1.3.2
#> [34] jquerylib_0.1.4 whisker_0.4.1 tidyr_1.3.1
#> [37] cachem_1.1.0 mime_0.12 tidyselect_1.2.1
#> [40] r3dmol_0.1.2 digest_0.6.37 duckdb_1.1.2
#> [43] purrr_1.0.2 fastmap_1.2.0 grid_4.4.1
#> [46] colorspace_2.1-1 cli_3.6.3 magrittr_2.0.3
#> [49] spdl_0.0.5 utf8_1.2.4 withr_3.0.2
#> [52] UCSC.utils_1.2.0 filelock_1.0.3 scales_1.3.0
#> [55] promises_1.3.0 bit64_4.5.2 XVector_0.46.0
#> [58] rmarkdown_2.28 httr_1.4.7 bit_4.5.0
#> [61] memoise_2.0.1 shiny_1.9.1 evaluate_1.0.1
#> [64] knitr_1.48 IRanges_2.40.0 GenomicRanges_1.58.0
#> [67] bio3d_2.4-5 BiocFileCache_2.14.0 rlang_1.1.4
#> [70] Rcpp_1.0.13 xtable_1.8-4 glue_1.8.0
#> [73] DBI_1.2.3 BiocGenerics_0.52.0 jsonlite_1.8.9
#> [76] R6_2.5.1 zlibbioc_1.52.0