Installation

To install and load NBAMSeq

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("NBAMSeq")
library(NBAMSeq)

Introduction

High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.

The workflow of NBAMSeq contains three main steps:

Here we illustrate each of these steps respectively.

Data input

Users are expected to provide three parts of input, i.e. countData, colData, and design.

countData is a matrix of gene counts generated by RNASeq experiments.

## An example of countData
n = 50  ## n stands for number of genes
m = 20   ## m stands for sample size
countData = matrix(rnbinom(n*m, mu=100, size=1/3), ncol = m) + 1
mode(countData) = "integer"
colnames(countData) = paste0("sample", 1:m)
rownames(countData) = paste0("gene", 1:n)
head(countData)
      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1      25     229       1      48       8     615     188      98     167
gene2      98       9       3       5      29      67     123      10       1
gene3     103     199     146      10       9       9     113       1      45
gene4     164       1      30     163     192     421      82       2       5
gene5     799       1      95      50       1      26      50      39      86
gene6     785     285       1      50      76      22      76      16     455
      sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1      459       85        1        1      129        1       81       69
gene2       55       18        1      200        7      150        8       48
gene3       14       48        1       38      139      231       71      174
gene4        7       73       38      279        3       19        5       43
gene5        6       20       86        1      325        7        3       16
gene6      148      165       20      111        8        1        3      210
      sample18 sample19 sample20
gene1        8      177       26
gene2       50     1183      148
gene3       60       50       51
gene4       28       35       31
gene5      429       19       70
gene6        4       12      124

colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.

## An example of colData
pheno = runif(m, 20, 80)
var1 = rnorm(m)
var2 = rnorm(m)
var3 = rnorm(m)
var4 = as.factor(sample(c(0,1,2), m, replace = TRUE))
colData = data.frame(pheno = pheno, var1 = var1, var2 = var2,
    var3 = var3, var4 = var4)
rownames(colData) = paste0("sample", 1:m)
head(colData)
           pheno       var1       var2       var3 var4
sample1 38.51204 -0.6678354  1.6709069 -0.3413777    1
sample2 71.21410 -0.4988147 -0.9298130 -1.0556452    2
sample3 65.22731  0.3528193 -0.3233422 -0.5270079    0
sample4 45.75614 -0.5392666 -1.0856483  0.6210935    0
sample5 75.73885 -1.1519942  0.3344813  1.6515987    1
sample6 76.96546  0.1413459 -0.8102947  1.5693547    0

design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:

design = ~ s(pheno) + var1 + var2 + var3 + var4

Several notes should be made regarding the design formula:

We then construct the NBAMSeqDataSet using countData, colData, and design:

gsd = NBAMSeqDataSet(countData = countData, colData = colData, design = design)
gsd
class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4

Differential expression analysis

Differential expression analysis can be performed by NBAMSeq function:

gsd = NBAMSeq(gsd)

Several other arguments in NBAMSeq function are available for users to customize the analysis.

library(BiocParallel)
gsd = NBAMSeq(gsd, parallel = TRUE)

Pulling out DE results

Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.

res1 = results(gsd, name = "pheno")
head(res1)
DataFrame with 6 rows and 7 columns
       baseMean       edf      stat    pvalue      padj       AIC       BIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1  116.0184   1.00009 2.7391315 0.0979262  0.325777   231.878   238.848
gene2   93.1707   1.00011 0.3637875 0.5464682  0.758984   224.546   231.517
gene3   76.3340   1.00006 4.0484705 0.0442157  0.280692   224.961   231.931
gene4   82.6128   1.00011 0.1763165 0.6747481  0.843435   210.056   217.027
gene5   78.6076   1.00011 0.0177276 0.8943970  0.956187   221.948   228.919
gene6   81.5067   1.00009 2.6275680 0.1050478  0.325777   229.439   236.409

For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.

res2 = results(gsd, name = "var1")
head(res2)
DataFrame with 6 rows and 8 columns
       baseMean        coef        SE        stat    pvalue      padj       AIC
      <numeric>   <numeric> <numeric>   <numeric> <numeric> <numeric> <numeric>
gene1  116.0184  1.15576440  0.583077  1.98218106 0.0474590  0.379112   231.878
gene2   93.1707  0.00482234  0.605040  0.00797029 0.9936407  0.993641   224.546
gene3   76.3340  0.16161598  0.506391  0.31915239 0.7496110  0.903428   224.961
gene4   82.6128 -0.89696252  0.478130 -1.87598044 0.0606580  0.379112   210.056
gene5   78.6076  0.99099287  0.593078  1.67093165 0.0947352  0.394730   221.948
gene6   81.5067 -0.93341441  0.539728 -1.72941660 0.0837346  0.380612   229.439
            BIC
      <numeric>
gene1   238.848
gene2   231.517
gene3   231.931
gene4   217.027
gene5   228.919
gene6   236.409

For discrete covariates, the contrast argument should be specified. e.g.  contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.

res3 = results(gsd, contrast = c("var4", "2", "0"))
head(res3)
DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat    pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1  116.0184 -1.705392  0.951935 -1.791500 0.0732132  0.291052   231.878
gene2   93.1707 -0.874424  0.990694 -0.882638 0.3774316  0.767800   224.546
gene3   76.3340 -0.648339  0.828196 -0.782833 0.4337250  0.767800   224.961
gene4   82.6128 -1.755842  0.783702 -2.240445 0.0250620  0.208850   210.056
gene5   78.6076  0.447886  0.970178  0.461653 0.6443299  0.894903   221.948
gene6   81.5067  1.052208  0.881423  1.193760 0.2325717  0.646033   229.439
            BIC
      <numeric>
gene1   238.848
gene2   231.517
gene3   231.931
gene4   217.027
gene5   228.919
gene6   236.409

Visualization

We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.

## assuming we are interested in the nonlinear relationship between gene10's 
## expression and "pheno"
makeplot(gsd, phenoname = "pheno", genename = "gene10", main = "gene10")

In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.

## here we explore the most significant nonlinear association
res1 = res1[order(res1$pvalue),]
topgene = rownames(res1)[1]  
sf = getsf(gsd)  ## get the estimated size factors
## divide raw count by size factors to obtain normalized counts
countnorm = t(t(countData)/sf) 
head(res1)
DataFrame with 6 rows and 7 columns
        baseMean       edf      stat      pvalue      padj       AIC       BIC
       <numeric> <numeric> <numeric>   <numeric> <numeric> <numeric> <numeric>
gene45   55.9752   1.00005  11.20844 0.000814655 0.0407327   187.873   194.843
gene25  133.1563   1.00009   7.96924 0.004759913 0.1031898   240.473   247.443
gene24   91.1278   1.00018   7.49489 0.006191387 0.1031898   208.166   215.136
gene26   52.5734   1.00004   6.51574 0.010694199 0.1336775   196.061   203.031
gene50  102.7870   1.00004   5.66189 0.017342079 0.1734208   220.883   227.853
gene31   53.3687   1.00004   4.32287 0.037610153 0.2806924   190.491   197.461
library(ggplot2)
setTitle = topgene
df = data.frame(pheno = pheno, logcount = log2(countnorm[topgene,]+1))
ggplot(df, aes(x=pheno, y=logcount))+geom_point(shape=19,size=1)+
    geom_smooth(method='loess')+xlab("pheno")+ylab("log(normcount + 1)")+
    annotate("text", x = max(df$pheno)-5, y = max(df$logcount)-1, 
    label = paste0("edf: ", signif(res1[topgene,"edf"],digits = 4)))+
    ggtitle(setTitle)+
    theme(text = element_text(size=10), plot.title = element_text(hjust = 0.5))

Session info

sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB              LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] ggplot2_3.5.1               BiocParallel_1.40.0        
 [3] NBAMSeq_1.22.0              SummarizedExperiment_1.36.0
 [5] Biobase_2.66.0              GenomicRanges_1.58.0       
 [7] GenomeInfoDb_1.42.0         IRanges_2.40.0             
 [9] S4Vectors_0.44.0            BiocGenerics_0.52.0        
[11] MatrixGenerics_1.18.0       matrixStats_1.4.1          

loaded via a namespace (and not attached):
 [1] KEGGREST_1.46.0         gtable_0.3.6            xfun_0.48              
 [4] bslib_0.8.0             lattice_0.22-6          vctrs_0.6.5            
 [7] tools_4.4.1             generics_0.1.3          parallel_4.4.1         
[10] RSQLite_2.3.7           tibble_3.2.1            fansi_1.0.6            
[13] AnnotationDbi_1.68.0    highr_0.11              blob_1.2.4             
[16] pkgconfig_2.0.3         Matrix_1.7-1            lifecycle_1.0.4        
[19] GenomeInfoDbData_1.2.13 farver_2.1.2            compiler_4.4.1         
[22] Biostrings_2.74.0       munsell_0.5.1           DESeq2_1.46.0          
[25] codetools_0.2-20        htmltools_0.5.8.1       sass_0.4.9             
[28] yaml_2.3.10             pillar_1.9.0            crayon_1.5.3           
[31] jquerylib_0.1.4         DelayedArray_0.32.0     cachem_1.1.0           
[34] abind_1.4-8             nlme_3.1-166            genefilter_1.88.0      
[37] tidyselect_1.2.1        locfit_1.5-9.10         digest_0.6.37          
[40] dplyr_1.1.4             labeling_0.4.3          splines_4.4.1          
[43] fastmap_1.2.0           grid_4.4.1              colorspace_2.1-1       
[46] cli_3.6.3               SparseArray_1.6.0       magrittr_2.0.3         
[49] S4Arrays_1.6.0          survival_3.7-0          XML_3.99-0.17          
[52] utf8_1.2.4              withr_3.0.2             scales_1.3.0           
[55] UCSC.utils_1.2.0        bit64_4.5.2             rmarkdown_2.28         
[58] XVector_0.46.0          httr_1.4.7              bit_4.5.0              
[61] png_0.1-8               memoise_2.0.1           evaluate_1.0.1         
[64] knitr_1.48              mgcv_1.9-1              rlang_1.1.4            
[67] Rcpp_1.0.13             DBI_1.2.3               xtable_1.8-4           
[70] glue_1.8.0              annotate_1.84.0         jsonlite_1.8.9         
[73] R6_2.5.1                zlibbioc_1.52.0        

References

Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12): 550.

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1): 139–40.

Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1: 29.

Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19): 2672–8.