iSEEhex 1.8.0
The iSEE package (Rue-Albrecht et al. 2018) provides a general and flexible framework for interactively exploring SummarizedExperiment
objects.
However, in many cases, more specialized panels are required for effective visualization of specific data types.
The iSEEhex package implements panels summarising data points in hexagonal bins, that work directly in the iSEE
application and can smoothly interact with other panels.
We first load in the package:
library(iSEEhex)
All the panels described in this document can be deployed by simply passing them into the iSEE()
function via the initial=
argument, as shown in the following examples.
Let us prepare an example SingleCellExperiment object.
library(scRNAseq)
# Example data ----
sce <- ReprocessedAllenData(assays="tophat_counts")
class(sce)
## [1] "SingleCellExperiment"
## attr(,"package")
## [1] "SingleCellExperiment"
library(scater)
sce <- logNormCounts(sce, exprs_values="tophat_counts")
sce <- runPCA(sce, ncomponents=4)
sce <- runTSNE(sce)
rowData(sce)$ave_count <- rowMeans(assay(sce, "tophat_counts"))
rowData(sce)$n_cells <- rowSums(assay(sce, "tophat_counts") > 0)
sce
## class: SingleCellExperiment
## dim: 20816 379
## metadata(2): SuppInfo which_qc
## assays(2): tophat_counts logcounts
## rownames(20816): 0610007P14Rik 0610009B22Rik ... Zzef1 Zzz3
## rowData names(2): ave_count n_cells
## colnames(379): SRR2140028 SRR2140022 ... SRR2139341 SRR2139336
## colData names(23): NREADS NALIGNED ... passes_qc_checks_s sizeFactor
## reducedDimNames(2): PCA TSNE
## mainExpName: endogenous
## altExpNames(1): ERCC
Then, we create an iSEE app that compares the
ReducedDimensionHexPlot
panel – defined in this package – to the
standard ReducedDimensionPlot
defined in the iSEE
package.
initialPanels <- list(
ReducedDimensionPlot(
ColorBy = "Feature name", ColorByFeatureName = "Cux2", PanelWidth = 6L),
ReducedDimensionHexPlot(
ColorBy = "Feature name", ColorByFeatureName = "Cux2", PanelWidth = 6L,
BinResolution = 30)
)
app <- iSEE(se = sce, initial = initialPanels)
sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] scater_1.34.0 ggplot2_3.5.1
## [3] scuttle_1.16.0 scRNAseq_2.19.1
## [5] iSEEhex_1.8.0 iSEE_2.18.0
## [7] SingleCellExperiment_1.28.0 SummarizedExperiment_1.36.0
## [9] Biobase_2.66.0 GenomicRanges_1.58.0
## [11] GenomeInfoDb_1.42.0 IRanges_2.40.0
## [13] S4Vectors_0.44.0 BiocGenerics_0.52.0
## [15] MatrixGenerics_1.18.0 matrixStats_1.4.1
## [17] BiocStyle_2.34.0
##
## loaded via a namespace (and not attached):
## [1] splines_4.4.1 later_1.3.2 BiocIO_1.16.0
## [4] bitops_1.0-9 filelock_1.0.3 tibble_3.2.1
## [7] XML_3.99-0.17 lifecycle_1.0.4 httr2_1.0.5
## [10] doParallel_1.0.17 lattice_0.22-6 ensembldb_2.30.0
## [13] alabaster.base_1.6.0 magrittr_2.0.3 sass_0.4.9
## [16] rmarkdown_2.28 jquerylib_0.1.4 yaml_2.3.10
## [19] httpuv_1.6.15 DBI_1.2.3 RColorBrewer_1.1-3
## [22] abind_1.4-8 zlibbioc_1.52.0 Rtsne_0.17
## [25] AnnotationFilter_1.30.0 RCurl_1.98-1.16 rappdirs_0.3.3
## [28] circlize_0.4.16 GenomeInfoDbData_1.2.13 ggrepel_0.9.6
## [31] irlba_2.3.5.1 alabaster.sce_1.6.0 codetools_0.2-20
## [34] DelayedArray_0.32.0 DT_0.33 tidyselect_1.2.1
## [37] shape_1.4.6.1 UCSC.utils_1.2.0 viridis_0.6.5
## [40] ScaledMatrix_1.14.0 shinyWidgets_0.8.7 BiocFileCache_2.14.0
## [43] GenomicAlignments_1.42.0 jsonlite_1.8.9 GetoptLong_1.0.5
## [46] BiocNeighbors_2.0.0 iterators_1.0.14 foreach_1.5.2
## [49] tools_4.4.1 Rcpp_1.0.13 glue_1.8.0
## [52] gridExtra_2.3 SparseArray_1.6.0 xfun_0.48
## [55] mgcv_1.9-1 dplyr_1.1.4 HDF5Array_1.34.0
## [58] gypsum_1.2.0 shinydashboard_0.7.2 withr_3.0.2
## [61] BiocManager_1.30.25 fastmap_1.2.0 rhdf5filters_1.18.0
## [64] fansi_1.0.6 shinyjs_2.1.0 digest_0.6.37
## [67] rsvd_1.0.5 R6_2.5.1 mime_0.12
## [70] colorspace_2.1-1 listviewer_4.0.0 RSQLite_2.3.7
## [73] utf8_1.2.4 generics_0.1.3 hexbin_1.28.4
## [76] rtracklayer_1.66.0 httr_1.4.7 htmlwidgets_1.6.4
## [79] S4Arrays_1.6.0 pkgconfig_2.0.3 gtable_0.3.6
## [82] blob_1.2.4 ComplexHeatmap_2.22.0 XVector_0.46.0
## [85] htmltools_0.5.8.1 bookdown_0.41 ProtGenerics_1.38.0
## [88] rintrojs_0.3.4 clue_0.3-65 scales_1.3.0
## [91] alabaster.matrix_1.6.0 png_0.1-8 knitr_1.48
## [94] rjson_0.2.23 nlme_3.1-166 curl_5.2.3
## [97] shinyAce_0.4.3 cachem_1.1.0 rhdf5_2.50.0
## [100] GlobalOptions_0.1.2 BiocVersion_3.20.0 parallel_4.4.1
## [103] miniUI_0.1.1.1 vipor_0.4.7 AnnotationDbi_1.68.0
## [106] restfulr_0.0.15 pillar_1.9.0 grid_4.4.1
## [109] alabaster.schemas_1.6.0 vctrs_0.6.5 promises_1.3.0
## [112] BiocSingular_1.22.0 dbplyr_2.5.0 beachmat_2.22.0
## [115] xtable_1.8-4 cluster_2.1.6 beeswarm_0.4.0
## [118] evaluate_1.0.1 GenomicFeatures_1.58.0 cli_3.6.3
## [121] compiler_4.4.1 Rsamtools_2.22.0 rlang_1.1.4
## [124] crayon_1.5.3 ggbeeswarm_0.7.2 viridisLite_0.4.2
## [127] alabaster.se_1.6.0 BiocParallel_1.40.0 munsell_0.5.1
## [130] Biostrings_2.74.0 lazyeval_0.2.2 colourpicker_1.3.0
## [133] Matrix_1.7-1 ExperimentHub_2.14.0 bit64_4.5.2
## [136] Rhdf5lib_1.28.0 KEGGREST_1.46.0 shiny_1.9.1
## [139] highr_0.11 alabaster.ranges_1.6.0 AnnotationHub_3.14.0
## [142] fontawesome_0.5.2 igraph_2.1.1 memoise_2.0.1
## [145] bslib_0.8.0 bit_4.5.0
Rue-Albrecht, Kevin, Federico Marini, Charlotte Soneson, and Aaron T. L. Lun. 2018. “ISEE: Interactive Summarizedexperiment Explorer.” F1000Research 7 (June): 741. https://doi.org/10.12688/f1000research.14966.1.