HiBED

Ze Zhang

2024-10-31

The HiBED package contains reference libraries derived from Illumina HumanMethylation450K and Illumina HumanMethylationEPIC DNA methylation microarrays (Zhang Z, Salas LA et al. 2023), consisting of 6 astrocyte, 12 endothelial, 5 GABAergic neuron, 5 glutamatergic neuron, 18 microglial, 20 oligodendrocyte, and 5 stromal samples from public resources.

The reference libraries were used to estimate proportions of 7 major brain cell types in 450K and EPIC bulk brain samples using a modified version of the algorithm constrained projection/quadratic programming described in Houseman et al. 2012.

Loading package:

library(HiBED)

Objects included:
1. HiBED_Libraries contains 4 libraries for deconvolution

data("HiBED_Libraries")
  1. HiBED_deconvolution function for brain cell deconvolution:

We offer the function HiBED_deconvolution to estimate proportions for 7 major brain cell types, including GABAergic neurons, glutamatergic neurons, astrocytes, microglial cells, oligodendrocytes, endothelial cells, and stromal cells. The estimates are calculated using modified CP/QP method described in Houseman et al. 2012.
see ?HiBED_deconvolution for details


# Step 1 load and process example
library(FlowSorted.Blood.EPIC)
library(FlowSorted.DLPFC.450k)
library(minfi)
Mset<-preprocessRaw(FlowSorted.DLPFC.450k)
             
Examples_Betas<-getBeta(Mset)


# Step 2: use the HiBED_deconvolution function in combinatation with the
# reference libraries for brain cell deconvolution.


 HiBED_result<-HiBED_deconvolution(Examples_Betas, h=2)
                                
 head(HiBED_result)
#>        Endothelial   Stromal Astrocyte Microglial Oligodendrocyte      GABA
#> 813_N          NaN       NaN 0.8548534  0.7915309        5.643616 14.867764
#> 1740_N         NaN       NaN 0.8524800  1.1596800        3.747840 17.805161
#> 1740_G   4.2758290 2.0241710 6.3462006 19.9935161       60.030283  3.336364
#> 1228_G   2.6479470 2.1120530 4.2803944  7.2064838       78.253122  2.508475
#> 813_G    2.5763484 1.9536516 5.4130230 14.4480688       69.668908  2.738889
#> 1228_N   0.5389908 0.7110092 1.5104187  1.6272037        7.832378 14.880146
#>              GLU
#> 813_N  70.812236
#> 1740_N 70.134839
#> 1740_G  4.003636
#> 1228_G  2.991525
#> 813_G   3.211111
#> 1228_N 69.869854
sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
#> [8] methods   base     
#> 
#> other attached packages:
#>  [1] IlluminaHumanMethylation450kmanifest_0.4.0
#>  [2] FlowSorted.DLPFC.450k_1.42.0              
#>  [3] FlowSorted.Blood.EPIC_2.10.0              
#>  [4] ExperimentHub_2.14.0                      
#>  [5] AnnotationHub_3.14.0                      
#>  [6] BiocFileCache_2.14.0                      
#>  [7] dbplyr_2.5.0                              
#>  [8] minfi_1.52.0                              
#>  [9] bumphunter_1.48.0                         
#> [10] locfit_1.5-9.10                           
#> [11] iterators_1.0.14                          
#> [12] foreach_1.5.2                             
#> [13] Biostrings_2.74.0                         
#> [14] XVector_0.46.0                            
#> [15] SummarizedExperiment_1.36.0               
#> [16] Biobase_2.66.0                            
#> [17] MatrixGenerics_1.18.0                     
#> [18] matrixStats_1.4.1                         
#> [19] GenomicRanges_1.58.0                      
#> [20] GenomeInfoDb_1.42.0                       
#> [21] IRanges_2.40.0                            
#> [22] S4Vectors_0.44.0                          
#> [23] BiocGenerics_0.52.0                       
#> [24] HiBED_1.4.0                               
#> 
#> loaded via a namespace (and not attached):
#>   [1] RColorBrewer_1.1-3        jsonlite_1.8.9           
#>   [3] magrittr_2.0.3            GenomicFeatures_1.58.0   
#>   [5] rmarkdown_2.28            BiocIO_1.16.0            
#>   [7] zlibbioc_1.52.0           vctrs_0.6.5              
#>   [9] multtest_2.62.0           memoise_2.0.1            
#>  [11] Rsamtools_2.22.0          DelayedMatrixStats_1.28.0
#>  [13] RCurl_1.98-1.16           askpass_1.2.1            
#>  [15] htmltools_0.5.8.1         S4Arrays_1.6.0           
#>  [17] curl_5.2.3                Rhdf5lib_1.28.0          
#>  [19] SparseArray_1.6.0         rhdf5_2.50.0             
#>  [21] sass_0.4.9                nor1mix_1.3-3            
#>  [23] bslib_0.8.0               plyr_1.8.9               
#>  [25] cachem_1.1.0              GenomicAlignments_1.42.0 
#>  [27] lifecycle_1.0.4           pkgconfig_2.0.3          
#>  [29] Matrix_1.7-1              R6_2.5.1                 
#>  [31] fastmap_1.2.0             GenomeInfoDbData_1.2.13  
#>  [33] digest_0.6.37             siggenes_1.80.0          
#>  [35] reshape_0.8.9             AnnotationDbi_1.68.0     
#>  [37] RSQLite_2.3.7             base64_2.0.2             
#>  [39] filelock_1.0.3            fansi_1.0.6              
#>  [41] httr_1.4.7                abind_1.4-8              
#>  [43] compiler_4.4.1            beanplot_1.3.1           
#>  [45] rngtools_1.5.2            bit64_4.5.2              
#>  [47] BiocParallel_1.40.0       DBI_1.2.3                
#>  [49] HDF5Array_1.34.0          MASS_7.3-61              
#>  [51] openssl_2.2.2             rappdirs_0.3.3           
#>  [53] DelayedArray_0.32.0       rjson_0.2.23             
#>  [55] tools_4.4.1               rentrez_1.2.3            
#>  [57] glue_1.8.0                quadprog_1.5-8           
#>  [59] restfulr_0.0.15           nlme_3.1-166             
#>  [61] rhdf5filters_1.18.0       grid_4.4.1               
#>  [63] generics_0.1.3            tzdb_0.4.0               
#>  [65] preprocessCore_1.68.0     tidyr_1.3.1              
#>  [67] data.table_1.16.2         hms_1.1.3                
#>  [69] xml2_1.3.6                utf8_1.2.4               
#>  [71] BiocVersion_3.20.0        pillar_1.9.0             
#>  [73] limma_3.62.0              genefilter_1.88.0        
#>  [75] splines_4.4.1             dplyr_1.1.4              
#>  [77] lattice_0.22-6            survival_3.7-0           
#>  [79] rtracklayer_1.66.0        bit_4.5.0                
#>  [81] GEOquery_2.74.0           annotate_1.84.0          
#>  [83] tidyselect_1.2.1          knitr_1.48               
#>  [85] xfun_0.48                 scrime_1.3.5             
#>  [87] statmod_1.5.0             UCSC.utils_1.2.0         
#>  [89] yaml_2.3.10               evaluate_1.0.1           
#>  [91] codetools_0.2-20          tibble_3.2.1             
#>  [93] BiocManager_1.30.25       cli_3.6.3                
#>  [95] xtable_1.8-4              jquerylib_0.1.4          
#>  [97] Rcpp_1.0.13               png_0.1-8                
#>  [99] XML_3.99-0.17             readr_2.1.5              
#> [101] blob_1.2.4                mclust_6.1.1             
#> [103] doRNG_1.8.6               sparseMatrixStats_1.18.0 
#> [105] bitops_1.0-9              illuminaio_0.48.0        
#> [107] purrr_1.0.2               crayon_1.5.3             
#> [109] rlang_1.1.4               KEGGREST_1.46.0

References

Z Zhang, LA Salas et al. (2023) SHierarchical deconvolution for extensive cell type resolution in the human brain using DNA methylation. Under Review

J. Guintivano, et al. (2013). A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics, 8(3):290–302, 2013. doi: [10.4161/epi.23924] (https://dx.doi.org/10.4161/epi.23924).

Weightman Potter PG, et al. (2021) Attenuated Induction of the Unfolded Protein Response in Adult Human Primary Astrocytes in Response to Recurrent Low Glucose. Front Endocrinol (Lausanne) 2021;12:671724. doi: [10.3389/fendo.2021.671724] (https://dx.doi.org/10.3389/fendo.2021.671724).

Kozlenkov, et al. (2018) A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. Sci. Adv. 2018;4:eaau6190. doi: [10.1126/sciadv.aau6190] (https://dx.doi.org/10.1126/sciadv.aau6190).

de Whitte, et al. (2022) Contribution of Age, Brain Region, Mood Disorder Pathology, and Interindividual Factors on the Methylome of Human Microglia. Biological Psychiatry March 15, 2022; 91:572–581. doi: [10.1016/j.biopsych.2021.10.020] (https://doi.org/10.1016/j.biopsych.2021.10.020).

X Lin, et al. (2018) Cell type-specific DNA methylation in neonatal cord tissue and cord blood: A 850K-reference panel and comparison of cell-types. Epigenetics. 13:941–58. doi: [10.1080/15592294.2018.1522929] (https://dx.doi.org/10.1080/15592294.2018.1522929).

LA Salas et al. (2022). Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling. Nature Communications 13(1):761. doi:[10.1038/s41467-021-27864-7](https://dx.doi.org/10.1038/s41467-021-27864-7).

EA Houseman et al. (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86. doi: 10.1186/1471-2105-13-86.

minfi Tools to analyze & visualize Illumina Infinium methylation arrays.