LoomExperiment 1.0.4
LoomExperiment
classThe LoomExperiment
family of classes inherits from the main class LoomExperiment
as well as the Experiment class that they are named after. For example, the SingleCellLoomExperiment
class inherits from both LoomExperiment
and SingleCellExperiment
.
The purpose of the LoomExperiment
class is to act as an intermediary between Bioconductor’s Experiment classes and the Linnarson Lab’s Loom File Format (http://linnarssonlab.org/loompy/index.html). The Loom File Format uses HDF5 to store Experiment data.
The LoomExperiment
family of classes contain the following slots.
colGraphs
rowGraphs
Both of these slots are LoomGraphs
objects that describe the col_graph
and row_graph
attributes as specified by the Loom File Format.
There are several ways to create instances of a LoomExperiment
class of object. One can plug an existing SummarizedExperiment type class into the appropriate constructor:
library(LoomExperiment)
counts <- matrix(rpois(100, lambda = 10), ncol=10, nrow=10)
sce <- SingleCellExperiment(assays = list(counts = counts))
scle <- SingleCellLoomExperiment(sce)
## OR
scle <- LoomExperiment(sce)
One can also simply plug the arguments into the appropriate constructor, since all LoomExperiment
constructors call the applicable class’s constructor
scle <- SingleCellLoomExperiment(assays = list(counts = counts))
Also, it is also possible to create a LoomExperiment
extending class via coercion:
scle <- as(sce, "SingleCellLoomExperiment")
scle
## class: SingleCellLoomExperiment
## dim: 10 10
## metadata(0):
## assays(1): counts
## rownames: NULL
## rowData names(0):
## colnames: NULL
## colData names(0):
## reducedDimNames(0):
## spikeNames(0):
## rowGraphs(0): NULL
## colGraphs(0): NULL
Finally, one can create a LoomExperiment
object from importing a Loom File.
We will use the following SingleCellLoomExperiment
for the remainder of the vignette.
l1_file <- system.file("extdata", "L1_DRG_20_example.loom", package = "LoomExperiment")
scle <- import(l1_file, type="SingleCellLoomExperiment")
scle
## class: SingleCellLoomExperiment
## dim: 20 20
## metadata(4): CreatedWith CreationDate LoomExperiment-class
## last_modified
## assays(1): matrix
## rownames(20): 1 2 ... 19 20
## rowData names(7): Accession Gene ... X_Total X_Valid
## colnames(20): 1 2 ... 19 20
## colData names(103): Age AnalysisPool ... cDNA_Lib_Ok ngperul_cDNA
## reducedDimNames(0):
## spikeNames(0):
## rowGraphs(0): NULL
## colGraphs(2): KNN MKNN
All the following methods apply to all LoomExperiment
classes.
LoomGraph
classThe colGraphs
and rowGraphs
slots of LoomExperiments correspond to the col_graphs
and row_graphs
fields in the Loom File format. Both of these slots require LoomGraphs
objects.
A LoomGraph
class extends the SelfHits
class from the S4Vectors
package with the requirements that a LoomGraph
object must:
integer
and non-negativeLoomExperiment
object (if attached to a LoomExperiment
object)The columns to
and from
correspond to either row
or col
indices in the LoomExperiment
object while w
is an optional column that specifies the weight.
A LoomGraph can be constructed in two ways:
a <- c(1, 2, 3)
b <- c(3, 2, 1)
w <- c(100, 10, 1)
df <- DataFrame(a, b, w)
lg <- as(df, "LoomGraph")
## OR
lg <- LoomGraph(a, b, weight = w)
lg
## LoomGraph object with 3 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## [3] 3 1 | 1
## -------
## nnode: 3
LoomGraph
objects can be subset by the ‘row’/‘col’ indices.
lg[c(1, 2)]
## LoomGraph object with 2 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## -------
## nnode: 3
lg[-c(2)]
## LoomGraph object with 2 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 3 1 | 1
## -------
## nnode: 3
LoomGraphs
classA LoomGraphs
object extends the S4Vectors:SimpleList
object. It contains multiple LoomGraph
objects with its only requirement being that it must contain LoomGraph
objects.
It can be created simply by using LoomGraph
objects in the LoomGraphs
constructor
lgs <- LoomGraphs(lg, lg)
names(lgs) <- c('lg1', 'lg2')
lgs
## LoomGraphs of length 2
## names(2): lg1 lg2
LoomExperiment
The LoomGraphs
assigned to these colGraphs
and rowGraphs
slots can be obtained by their eponymous methods:
colGraphs(scle)
## LoomGraphs of length 2
## names(2): KNN MKNN
rowGraphs(scle)
## LoomGraphs of length 0
The same symbols can also be used to replace the respective LoomGraphs
colGraphs(scle) <- lgs
rowGraphs(scle) <- lgs
colGraphs(scle)
## LoomGraphs of length 2
## names(2): lg1 lg2
rowGraphs(scle)
## LoomGraphs of length 2
## names(2): lg1 lg2
colGraphs(scle)[[1]]
## LoomGraph object with 3 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## [3] 3 1 | 1
## -------
## nnode: 20
rowGraphs(scle)[[1]]
## LoomGraph object with 3 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## [3] 3 1 | 1
## -------
## nnode: 20
LoomExperiment
objects can be subsetting in such a way that the assays
, colGraphs
, and rowGraphs
will all be subsetted. assays
will will be subsetted as any matrix
would. The i
element in the subsetting operation will subset the rowGraphs
slot and the j
element in the subsetting operation will subset the colGraphs
slot, as we’ve seen from the subsetting method from LoomGraphs
.
scle2 <- scle[c(1, 3), 1:2]
colGraphs(scle2)[[1]]
## LoomGraph object with 1 hit and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 2 2 | 10
## -------
## nnode: 2
rowGraphs(scle2)[[1]]
## LoomGraph object with 2 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 2 | 100
## [2] 2 1 | 1
## -------
## nnode: 2
scle3 <- rbind(scle, scle)
scle3
## class: SingleCellLoomExperiment
## dim: 40 20
## metadata(8): CreatedWith CreationDate ... LoomExperiment-class
## last_modified
## assays(1): matrix
## rownames(40): 1 2 ... 19 20
## rowData names(7): Accession Gene ... X_Total X_Valid
## colnames(20): 1 2 ... 19 20
## colData names(103): Age AnalysisPool ... cDNA_Lib_Ok ngperul_cDNA
## reducedDimNames(0):
## spikeNames(0):
## rowGraphs(2): lg1 lg2
## colGraphs(4): lg1 lg2 lg1 lg2
colGraphs(scle3)
## LoomGraphs of length 4
## names(4): lg1 lg2 lg1 lg2
rowGraphs(scle3)
## LoomGraphs of length 2
## names(2): lg1 lg2
colGraphs(scle3)[[1]]
## LoomGraph object with 3 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## [3] 3 1 | 1
## -------
## nnode: 20
rowGraphs(scle3)[[1]]
## LoomGraph object with 6 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## [3] 3 1 | 1
## [4] 21 23 | 100
## [5] 22 22 | 10
## [6] 23 21 | 1
## -------
## nnode: 40
Finally, the LoomExperiment
object can be exported.
temp <- tempfile(fileext='.loom')
export(scle2, temp)
sessionInfo()
## R version 3.5.2 (2018-12-20)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.5 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.8-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.8-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] LoomExperiment_1.0.4 rtracklayer_1.42.2
## [3] rhdf5_2.26.2 SingleCellExperiment_1.4.1
## [5] SummarizedExperiment_1.12.0 DelayedArray_0.8.0
## [7] BiocParallel_1.16.6 matrixStats_0.54.0
## [9] Biobase_2.42.0 GenomicRanges_1.34.0
## [11] GenomeInfoDb_1.18.2 IRanges_2.16.0
## [13] S4Vectors_0.20.1 BiocGenerics_0.28.0
## [15] BiocStyle_2.10.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.0 compiler_3.5.2
## [3] BiocManager_1.30.4 XVector_0.22.0
## [5] bitops_1.0-6 tools_3.5.2
## [7] zlibbioc_1.28.0 digest_0.6.18
## [9] evaluate_0.13 lattice_0.20-38
## [11] Matrix_1.2-15 yaml_2.2.0
## [13] xfun_0.5 GenomeInfoDbData_1.2.0
## [15] stringr_1.4.0 knitr_1.21
## [17] Biostrings_2.50.2 grid_3.5.2
## [19] HDF5Array_1.10.1 XML_3.98-1.19
## [21] rmarkdown_1.11 bookdown_0.9
## [23] Rhdf5lib_1.4.2 magrittr_1.5
## [25] GenomicAlignments_1.18.1 Rsamtools_1.34.1
## [27] htmltools_0.3.6 stringi_1.3.1
## [29] RCurl_1.95-4.12